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Abstract
Schizophrenia and bipolar disorder have similar clinical features. Their differential diagnosis is crucial because each has

different prognostic and therapeutic characteristics. Earlier studies have used numerous methods, including magnetic

resonance investigation, in an effort to differentiate these two disorders. Research has consistently shown that there is

reduced white matter density in the fronto-temporal and fronto-thalamic pathways in both patients with bipolar disorder

and schizophrenia; however, the sensitivity of the methods used is limited. Tract-based spatial statistics is a method of

whole-brain analysis that relies on voxel-based comparison, and uses nonlinear image transformation and permutation tests

with correction for multiple comparisons. The primary aim of the present study was to investigate anatomical connectivity

changes in patients with bipolar disorder and schizophrenia using tract-based spatial statistics, to classify the patients

according to white matter integrity patterns using machine learning, and to identify features that represent the key

differences between the disorders. Whole-brain images of 41 bipolar disorder patients, 39 schizophrenia patients, and 23

controls were acquired using a 1.5 T magnetic resonance investigation scanner. As compared to the controls, the

schizophrenia and bipolar disorder patients had reduced fractional anisotropy in similar white matter tracts. In addition, the

imaging method employed differentiated the schizophrenia and bipolar disorder patients with 81.25% accuracy. Although

the bipolar disorder and schizophrenia patients exhibited similar anatomical connectivity changes, as compared to the

controls, the connectivity reductions in the right hemisphere in the bipolar disorder patients differentiated them from the

schizophrenia patients. The present findings improve our understanding of the etiology and pathogenesis of bipolar disorder

and schizophrenia, and can potentially be used as a biomarker for the diagnosis and treatment of both disorders.
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1 Introduction

Bipolar disorder (BD) is a psychiatric disorder character-

ized by episodes of mania and depression. During a manic

episode, individuals often have excessive energy, and

move, think, and speak rapidly. They can also experience

delusions and suspect that others seek to harm them.

During a manic episode, some individuals have visual and/

or auditory hallucinations. Episodes of severe depression

and dysfunctions in several cognitive areas also occur in

individuals with BD [1]. Schizophrenia (SCH) is a psy-

chiatric disorder characterized by a group of so-called

positive symptoms, including hallucinations, delusions,

and/or disordered thought. Individuals with SCH can also

& Baris Metin

baris.metin@uskudar.edu.tr

1 Department of Psychology, Faculty of Humanities and Social

Sciences, Uskudar University, Haluk Turksoy sok. No:14,

Altunizade, Uskudar, Istanbul, Turkey

2 Psychiatry Unit, NPIstanbul Hospital, Uskudar University,

Istanbul, Turkey

3 Department of Computer Engineering, Faculty of

Engineering and Natural Sciences, Uskudar University,

Istanbul, Turkey

123

Neural Computing and Applications
https://doi.org/10.1007/s00521-018-03992-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-03992-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-03992-y&amp;domain=pdf
https://doi.org/10.1007/s00521-018-03992-y


have negative symptoms, such as diminished social inter-

action, lack of pleasure in previously enjoyable activities,

diminished speech, and an effect lacking expressiveness.

As can be seen, the positive symptoms of SCH can mimic a

BD manic episode, and the negative symptoms of SCH can

be similar to those of a BD depressive episode, and psy-

chiatrists often see both patients with a mixture of positive

and negative symptoms. Furthermore, antipsychotics are

used to treat both disorders [2], cognitive deficits are

common in both [3], the genetic risk factors are similar for

both [4], and abnormalities in the neurotransmitter system

[5, 6] are observed in both SCH and BD. In addition, up to

75% of first-episode SCH patients exhibit symptoms of

depression [7]. Based on the similarities in the clinical

presentation of SCH and BD, it can be difficult to accu-

rately diagnose both according to clinical findings only [8].

These similarities led to a search for biomarkers that can

differentiate between the two disorders when initial

symptoms appear. Neuroimaging is a method that can yield

specific and sensitive biomarkers, and diffusion tensor

imaging (DTI) facilitates detection of microstructural

alterations in white matter tracts. Furthermore, a limited

number of studies showed that, as compared to healthy

controls, BD patients have lower fractional anisotropy (FA)

in the following regions (for a review see [9]): the anterior

thalamic radiation and uncinate fasciculus, the fornix,

posterior cingulate, corpus callosum, and parietal and

temporal corona radiate [10, 11]. Additionally, Versace

et al. [12] observed higher FA in the frontal cortex, tem-

poral cortex, cuneus, and left uncinate fasciculus in BD

patients than in healthy controls. In contrast, whole-brain

analysis using tract-based spatial statistics (TBSS) shows

that patients with SCH have lower FA in the inferior and

superior longitudinal fasciculus, superior and left inferior

fronto-occipital fasciculus, corpus callosum, anterior tha-

lamic radiation, posterior corona radiate, and uncinate

fasciculus, as compared to healthy controls [13–16]. In

addition, higher FA was observed in the inferior part of the

corticopontine–cerebellar circuit in SCH patients than in

healthy controls [13].

To date, few studies directly compared white matter

tracts in SCH and BD patients [e.g., 17]. Those that did

reported similar structural brain abnormalities in patients

with both disorders, including reduced white matter density

in the fronto-temporal and fronto-thalamic pathways, such

as the anterior internal capsule and uncinate fasciculus, as

compared to controls. Only one study noted a significant

difference between SCH and BD: Lu et al. [18] reported

that individuals with BD had lower FA in the posterior

thalamic radiation and inferior longitudinal fasciculus than

SCH patients.

One reason the studies above observed few differences

between SCH and BD patients is that all used standard

registration and smoothing procedures, followed by voxel-

based analysis, and the arbitrary choice of smoothness [19]

and alignment inaccuracies [20] limit generalizability of

the data [21]. TBSS is a whole-brain voxel-based analysis

method that provides sophisticated solutions to smoothness

and alignment problems when evaluating white matter

alterations [21]. TBSS, which uses nonlinear image trans-

formation and permutation tests, with correction of multi-

ple comparisons, does not require smoothing. The primary

aim of the present study was to determine white matter

differences in SCH and BD patients that could be used for

accurate differential diagnosis. The present study used

TBSS and machine learning (ML) to investigate the dif-

ferences between SCH and BD patients.

As earlier studies showed overlapping white matter

alterations in both disorders, it was hypothesized that SCH

and BD patients would exhibit similar structural brain

abnormalities, as compared to healthy controls. In addition,

it was hypothesized that it would be possible to accurately

differentiate SCH and BD patients based on white matter

tract FA values. As such, a secondary aim of the present

study was to discern the pathophysiological differences

between BD and SCH patients. Furthermore, multiple ML

approaches were compared to determine which could be a

potential diagnostic tool for differentiating BD and SCH

patients.

2 Materials and methods

2.1 Participants

The study included 103 participants: 39 in the SCH group,

41 in the BD, and 23 in the control group. Patients were

administered a structured interview and diagnosed based

on DSM-IV and the consensus of two psychiatrists. The

SCH group included 27 males and 12 females aged

14–74 years (mean age 31.15 ± 12.09 years), and the BD

group included 23 males and 18 females aged 15–60 years

(mean age 33.51 ± 10.13 years). The control group

included 14 males and 9 females aged 20–45 years (mean

age 30.52 ± 6.50 years) with a negative history of neuro-

logical and psychiatric disease. The study protocol was

approved by the Uskudar University Ethics Committee.

The control group provided written informed consent.

However, the SCH and BD patients were identified retro-

spectively based on hospital records, and therefore,

informed consent was not obtained.

2.2 Data acquisition

Whole-brain images were acquired at NP Istanbul-Uskudar

University, Istanbul, Turkey, using a 1.5 Tesla Philips
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Achieva MRI scanner (Philips Medical Systems, Best, the

Netherlands) and a SENSE eight-channel head coil. All

DTI sequences were based on a single-shot spin-echo echo-

planar imaging (EPI) sequence. The imaging parameters

were as follows: repetition time (TR): 9024.51 ms; echo

time (TE): 66.752 ms; acquisition matrix: 128 9 128; flip

angle: 90�; voxel size: 1.75 mm 9 1.75 mm 9 2 mm;

slice thickness: 2 mm; slice spacing: 2 mm. One b0 image

without diffusion weighting and 16 non-collinear gradient

directions were acquired with a single b value of

800 s mm-2.

2.3 Image processing

This study used TBSS for whole-brain analysis (TBSS

version 1.0, FMRIB Center, Oxford, UK [21] (TBSS is a

software package implemented in FSL version 5.0 software

[FMRIB Software Library, http://www.fmrib.ox.ac.uk/fsl/]

[22]). Eddy current correction was used for standard pre-

processing including motion correction and, with co-reg-

istration to the B0 image with gradient directions corrected.

Following eddy current correction, brain extraction was

implemented using Brain Extraction Tool (BET) [23] and

the diffusion tensor was calculated using the DTIFIT pro-

gram to create a single FA image for each participant. The

standard TBSS procedure was used for the remainder of the

analyses [21]. All individual FA volumes were registered

to the FMRIB58 template using nonlinear registration.

Then, the nonlinearly aligned images are merged into a

single 4D image file and the mean of all FA images was

calculated. All individual FA data were thinned to generate

a mean FA skeleton. FA values for all white matter tracts in

each participant, based on the JHU White Matter Trac-

tography Atlas [24], were calculated using ROIs, as fol-

lows: 20 ROIs were created on the mean FA skeleton, and

FA values for each participant’s mean-aligned image were

extracted for each skeletal region. Thus, average FA values

for all tracts were obtained and used for ML-based

classification.

2.4 Machine learning classification

Following ROI data extraction, the support vector machine

(SVM) approach and artificial neural network (ANN)

approach were used to differentiate the SCH or BD

patients. (Detailed information about the ANN and the

genetic algorithm [GA] is given in Appendices 1 and 2.)

Additionally, a feature selection process and imported GA

were used to generate a hybrid structure, as previously

described [17, 23, 24]. In order to reduce the number of

features given as the input matrix to the model and to

ensure the more informative features, GA was employed in

a wrapper-based fashion. GA was implemented using a

population of 150, a two-point crossover probability of 0.5,

and a mutation rate of 0.1. At each step, the GA uses the

current population that is representing the whole solution

set, to create the children that make up the next generation.

Crossover and mutation were applied uniformly to each

generation’s selected individuals. As the individuals that

tend to have a higher probability of survival are valuable

for the feature selection process, they are expected to go

forward to form the new generation. The selection

scheme used tournament size as 0.2 that specifies the

fraction of the current population which should be used as

tournament members.

In order to eliminate overfitting, it is widely used to hold

out some part of the data as a test set when performing a

supervised learning experiment, such as ANN. Through the

calculation process of ‘‘hyperparameters’’ for the predic-

tive models, there is still a risk of overfitting on the test set

since the parameters could be tweaked until the estimator

performs optimally. Therefore, the information could

‘‘leak’’ into the model and the evaluation metrics then no

longer report on generalization performance. In order to

solve that problem, whole data were divided into three

parts. Firstly, 70% of the data are processed as training set,

while the remaining data are divided into equal-sized

‘‘validation set’’ and ‘‘test set.’’ The training subset was

first employed in order to fit the models, and the validation

set was then employed to estimate prediction error for

model selection. Finally, the test set was used for assess-

ment of the generalization error of the final chosen model.

Since splitting the data into three separate sets, we drasti-

cally reduce the number of sample sets, which could be

used for learning the model, and the results could depend

on a particular random choice for train, validation sets. A

valuable solution to this problem is cross-validation (CV).

Basically, with k-fold CV the whole dataset is employed

efficiently. A test set is still held out for the final evalua-

tion, but the validation set is no longer needed for CV. The

training dataset is divided into k smaller sets, the model is

trained using k-1 of the folds as training data, and then, the

resulting model is validated on the remaining data to

compute a performance measure such as accuracy. This

approach could be computationally expensive, but values

the dataset are very small. In this study, fourfold CV with

stratified sampling was used. To compare the performance

of ANN, SVM models were also created using the datasets.

In order to compare the performance of the aforementioned

methods, three measures were used: (1) overall accuracy;

(2) area under the ROC curve (AUC) value; and (3) Gini

coefficient. The Gini coefficient can be generated directly

from the AUC value, which is the ratio of the area between

the ROC curve and the diagonal line to the area of the

above triangle in the ROC curve. Gini = (2*AUC - 1) is
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the equation used to express the Gini coefficient in terms of

the AUC value.

2.5 Statistical analysis

One-way ANOVA and the Chi-square test were used to

compare age and gender variables between the three

groups. Statistical analyses were performed using Statisti-

cal Package for the Social Sciences (SPSS 22), and

P\ 0.05 was used for statistical significance.

3 Results

There were not any significant differences in age

(t(100) = 0.811, P = 0.447; see Table 1) or gender (v2 (1,
n = 103) = 1.48, P = 0.48) between the SCH, BD, and

control groups.

The classification performance of the SVM and ANN

models is shown in Table 2. The performance of the ANN

approach was better than that of the SVM model, but not

satisfactory. This finding shows that the ANN-GA model

using five white matter tracts (the right inferior fronto-

occipital fasciculus, right inferior longitudinal fasciculus,

right hippocampus, the temporal part of the right superior

longitudinal fasciculus, and the forceps major) outper-

formed the other model. Moreover, with fewer features the

ANN-GA model generated a remarkable AUC value. The

Gini coefficient also indicates that it performed better than

standalone SVM and ANN models.

As given in Table 2, ANN and SVM approaches were

employed, respectively, in order to compare their classifi-

cation capability. Since ANN outperformed, GA step is

added to the model to boost the performance of the system.

In addition to the increasing performance of the hybrid

model, less number of features, 5 of 20, was fed into the

model.

Table 3 gives the classification outcome of the model. In

total, 36 of 41 SCH subjects and 29 of 39 BD subjects were

correctly classified, resulting in 81.25 overall classification

accuracy that is quite satisfactory.

Figure 1 shows that the performance of the ANN-GA

hybrid model was better and had remarkable predictive

generalization capability, with a higher true positive rate

and lower false positive FP rate that underlines a high area

under curve value.

As compared to the controls, the SCH patients (Fig. 2)

and BD patients (Fig. 3) had lower FA in several white

matter tracts (see Table 4); however, as shown in Table 4,

the age range in the patient groups was wider. In order to

eliminate errors due to the difference in age range, indi-

viduals were removed from the patient groups to make the

age range equal to that in the control group; however, even

after limiting the age range in the SCH and BD groups, the

results remained consistent (Table 4).

4 Discussion

The present study used voxel-based TBSS and ML meth-

ods to determine whether FA values could be used to dif-

ferentiate BD and SCH patients. The TBSS results

demonstrate that the SCH and BD groups lower FA

reductions in similar white matter tracts, as compared to

the control group. Furthermore, the decrease in FA in the

BD group was more pronounced in white matter tracts in

the right hemisphere, as compared to SCH group, and the

ANN-GA method accurately differentiated the participants

with 81.25% accuracy.

The present findings have a number of implications. The

findings show that BD patients have lower FA in the right

hemisphere white matter tracts (the inferior fronto-occipital

fasciculus, inferior longitudinal fasciculus, hippocampus,

and the temporal part of the superior longitudinal fascicu-

lus) and in the forceps major than SCH patients. The

inferior fronto-occipital fasciculus connects the occipital

cortex to the orbitofrontal regions and passes through the

temporal lobe and insula. Additionally, it is known to play

a crucial role in identification of facial emotion [25],

visuospatial processing [26], and semantic processing [27].

Earlier studies reported abnormal fronto-occipital connec-

tivity in patients with BD, obsessive–compulsive disorder,

and psychotic symptoms [28–30]. In the present study, low

FA was observed only in the right inferior fronto-occipital

fasciculus in the BD group. The inferior longitudinal fas-

ciculus connects the white matter tracts in the anterior

temporal lobe and amygdala to the prefrontal cortex and

other cortical regions [31]. Recent findings show that the

inferior longitudinal fasciculus plays a key role in visual-

specific semantic memory and emotion processing [32, 33].

In BD patients, lower FA in the inferior fronto-occipital

fasciculus and inferior longitudinal fasciculus might be

associated with impaired visual processing or emotion

dysregulation [34]. The hippocampus is part of the Papez

circuit and is involved in emotional regulation [35].

Although most of the structural imaging studies reviewed

Table 1 Demographic findings according to group

Group Age (years) Gender (n)

Mean SD Female Male

BP 33.51 10.13 18 23

SCH 31.15 12.09 12 27

Control 30.52 6.501 9 14
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did not report any hippocampal alterations in BD patients

(see Frey et al. [36] for a review), a few reported that right

hippocampal volume was smaller in BD patients than in

healthy controls [37]. It was also compared psychotic and

non-psychotic BD patients, SCH patients, and controls, and

observed smaller left hippocampal volume in the non-

psychotic BD patients, as compared to the controls; how-

ever, they did not note any difference between the psy-

chotic and non-psychotic BD and SCH patients. The

superior longitudinal fasciculus connects the white matter

tracts in the frontal association cortices to the temporo-

parietal regions and plays a role in auditory and speech

processing and visuospatial attention [38, 39]. It was

reported that disruption of the superior longitudinal fasci-

culus pathway is associated with the positive symptoms of

Table 2 Classification

performance of ANN models

for FA values in white matter

tracts

Models Overall accuracy (%) Number of features AUC value Gini

SVM 58.75 20 0.61 0.22

ANN 65 20 0.68 0.36

ANN-GA 81.25 5 0.83 0.66

Table 3 Classification performance of GA-ANN approach

Real SCH Real BD

Prediction

of SCH

36 10

Prediction

of BD

5 29

Accuracy 81.25%

Fig. 1 ROC curves for the

SVM, ANN, and ANN-GA

models

Fig. 2 White matter tracts showing significantly lower FA values in patients with SCH than HC

Fig. 3 White matter tracts showing significantly lower FA values in patients with BD than HC
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BD [10]. In the present study, low FA in the temporal part

of the right superior longitudinal fasciculus was observed

in BD patients; the clinical correlate of these findings

should be explored in the future. The forceps major con-

nects the occipital lobes to the corpus callosum, and an

earlier study reported that the FA value in the forceps

major correlates with psychotropic medication load in BD

patients [40]. The present findings, low FA in the forceps

major observed in the BD patients, might have been due to

the medications used by the BD patients. In summary, the

present findings show that FA values, especially in right

hemisphere, can be used to differentiate SCH and BD

patients. Moreover, these findings are consistent with the

current understanding of the neurobiology of BD and its

clinical presentation, which is characterized by substantial

alteration in emotion regulation [40].

Another implication of the present study’s findings is

based on the fact that the study employed a hybrid

approach—a supervised learning model and genetic algo-

rithm—to differentiate SCH and BD patients. As compared

to other ML methods, such as SVM and decision trees,

ANNs have many advantages that must be considered by

any prospective user. The ability to use multiple network

architectures, learning algorithms, connections, and

topologies, a computationally inexpensive structure, and

flexible transfer functions are among the benefits of ANNs.

Moreover, as the training process runs regardless of the

size of the dataset and the relative importance of the input

variables, an optimization algorithm (GA) was employed in

the present study in order to select features that are more

informative. The results obtained show that GA increased

the overall classification accuracy with less number of

features. The other measures—ROC curve, AUC, and Gini

values—were implemented to determine the specific con-

tribution of the feature selection method used. Based on the

present findings, we think the ANN-GA architecture can be

used as a powerful computational tool for data gathered

from medical monitoring instruments and, thusly, can be

applicable to clinical studies based on diagnostic findings.

The present findings also show that the SCH and BD

groups differed significantly from the control group in a

wide range of white matter tracts, and in many instances,

the SCH and BD groups differed in a similar fashion from

the control group. Previous DTI studies reported that there

is substantial overlap of altered white matter tracts in SCH

and BD patients [e.g., 17]. Interestingly, genetic studies

also indicate that SCH and BD share a number of genetic

risk factors [41]. Additional research based on genetic and

imaging findings might yield more accurate methods of

differentiating patients with BD and SCH.

The primary limitation of the present study is that most

of the patients were on medication when MRI scanning

was performed. The naturalistic design of this study may

not rule out the confounding effects of medication. How-

ever, the course of chronic psychiatric conditions usually

does not allow strict experimental inclusion criteria due to

the long course of illness and problems in reaching

unmedicated patients. As a natural limitation, the mecha-

nism of pharmacological agents used in BD and SCH are

slightly different and the effects of this issue in the brain

connectivity could not be exempted. Future studies should

investigate drug-naı̈ve patients; however, as most SCH and

BD patients are prescribed mood stabilizers immediately

after diagnosis, it might be difficult to find such patients.

Another limitation is that non-isotropic voxels were used.

The normalization of non-isotropic voxels changed the

voxel dimensions, which might have resulted in underes-

timation of FA in areas with crossing fibers [42]. To

overcome this problem, an ROI-based approach might

prove to be more effective than whole-brain comparison. In

the present study FA values in the white matter tracts were

extracted one by one in an attempt to reduce the likelihood

of underestimation due to crossing fibers.

5 Conclusion

Finally, the results demonstrate that tract-based spatial

statistics is a potential method used to discriminate

between SCH and BD based on whole-brain analysis that

relies on voxel-based comparison using nonlinear image

transformation and permutation tests with correction for

multiple comparisons. In addition, the ML approaches

employed are useful for classifying brain abnormalities and

represent a step toward development of a tool for accu-

rately differentiating SCH and BD patients. In this context,

the paper puts forward a study using two-step hybridized

methodology: GA algorithm for feature selection process

Table 4 Clusters showing significantly lower FA values in the SCH and BD patients, as compared to age-matched controls

Contrast Voxels P value Max X (mm) Max Y (mm) Max Z (mm) Peak difference

C[SCH (age-matched) 171,480 1 7 - 33 - 42 Corticospinal tract

C[BD (age-matched) 169,969 1 13 - 35 - 39 Corticospinal tract

TFCE-corrected results, P\ 0.001
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and machine learning methods, namely ANN and SVM, for

training process. The noteworthy performance of ANN–

GA approach stated that it is possible to discriminate 36

SCH and 29 BD subjects using selected features with

81.25% overall classification accuracy. Our findings sup-

port the potential utility of the proposed methodology to be

used as a clinical tool in classifying SCH and BD subjects.

Further studies are warranted to replicate this result in

order to lead to the development of clinically useful

diagnostic methodologies and should be designed to

determine the effects of medications used to treat SCH and

BD on connectivity.
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Appendix 1: Artificial neural network—
supervised learning

An artificial neural network (ANN) could be described as a

machine learning approach that mimics a biological ner-

vous system, and is a powerful modeling tool for approx-

imating nonlinear relationships and finding patterns within

a dataset. An ANN is a structure used for processing

information and approximating functions based on a

number of inputs. With adaptive ability to be used as an

arbitrary function approximation mechanism, ANNs

‘‘learn’’ from the observed data. Following the training

process, an ANN model predicts response for any given

input. That is, an ANN can be used to infer a function

based on the collected input/output data. The main features

of an ANN are learning adaptation, generalization, massive

parallelism, robustness, and abstraction. The structure of a

basic ANN can be theoretically modeled, as depicted in

Fig. 4, where X{xi, i = 1, 2,…, n} is the input matrix to the

neuron and Y denotes the output of the model.

Inputs are connected to each neuron via a mathematical

process. Each input is multiplied by a weight (wi) associ-

ated with each neuron, and a constant bias (b) is added to

that scalar value. The process is repeated for each input for

all neurons, and finally, their sum goes through a transfer

function (f) that is expressed as given in Eq. 1 [8].

Y ¼ f
Xn

i¼1

wixi þ b

 !
ð1Þ

There is a wide variety of transfer functions and selec-

tion of the proper transfer function is crucial. As there is a

nonlinear relationship between the input and output, non-

linear transfer functions are widely adopted for medical

image processing. With selection of proper activation

functions and connection of neurons, various neural net-

works can be constructed and trained to generate specified

outputs. ANN learning paradigms for medical image pro-

cessing generally include supervised learning and unsu-

pervised learning. For supervised learning, a network is

trained with preset input and output data. During the

training process, a set of inputs is used to generate asso-

ciated output values until the ANN output converges to the

reference target with a predefined error value that is ideally

zero. Accordingly, the aim of the training process is to

minimize the network’s overall output error for all training

cases by iteratively adjusting the neuron connection

weights and bias values using a specific training algorithm.

Training process

BP neural network is a typical multilayer feed-forward

network trained according to backpropagation algorithm.

BP neural network uses parallel distributed processing

approach to handle both qualitative and quantitative

knowledge. It has strong robustness, fault tolerance, and

adaptability and can fully approximate any complex non-

linear relationship. Because of these advantages, BP neural

network is more appropriate for processing EEG data

which are possible noisy, unstable, and nonlinear. In this

study, for modeling process, feed-forward neural network

trained by a backpropagation algorithm is used. The net-

work is based on the supervised procedure, i.e., the net-

work constructs a model based on examples of data with

known outputs. The architecture of the network is a layered

feed-forward neural network, in which the nonlinear

Fig. 4 Basic structure of an ANN
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elements (neurons) are arranged in successive layers, and

the information flows from input layer to output layer,

through the hidden layer(s). Sigmoid transfer function used

in each neuron because of its nonlinear behavior. In order

to minimize the error between the model output and a

reference value, MSE (mean square error) is used as the

cost function, given in Eq. 2. The cost function is mini-

mized by GA.

J wð Þ ¼ 1

N

XN

k¼1

yk � zkð Þ2 ð2Þ

The sigmoid function was used in the present study as

the activation function, and TrainBR (Bayesian regular-

ization backpropagation) was used as the training algo-

rithm. TrainBR is a function that updates the weight and

bias values according to the Levenberg–Marquardt opti-

mization method, and minimizes a combination of squared

errors and weights in order to determine the correct com-

binations, so that the generated model can generalize well.

For the validation process, fourfold cross-validation with

shuffled sampling was employed. The ANN structure was

set as a multilayer perceptron (MLP)—a powerful function

approximator for prediction and classification using a

supervised learning algorithm. The architecture of an MLP

neural network is constructed with two layers. A basic two-

layer ANN contains an input layer connected to input

variables and an output layer that generates the corre-

sponding output. Although an MLP is a satisfactory

approximator for linear problems, hidden layers for ana-

lyzing nonlinearity and complexity problems are added.

Appendix 2: Genetic neural network

A genetic algorithm (GA) is a very powerful meta-heuristic

and evolutionary algorithm that has been used with other

evolutionary algorithms for multiple problems across dis-

ciplines. Despite the advent of newly adapted meta-

heuristic methods, GA remains a popular choice for solving

many challenging optimization problems for exact methods

that are computationally too expensive. Moreover, due to

its intrinsic structure, which is similar to the use of a set (a

population) of solutions to be optimized in parallel, GA is

considered a natural method for solving problems with

multi-objective characteristics.

GA is a stochastic approach inspired by actual genetic

processes and follows the ‘‘survival of the fittest’’ mecha-

nism. GA is widely used for optimizing large, complex,

and multi-dimensional problems, and generating optimal

solutions. The optimization process begins with a set of

possible solutions obtained from the whole search space

consisting of all features. Each solution is encoded by a set

of string expressions (referred to as chromosomes). The set

of chromosomes are considered the population. Via the

optimization process shown in Fig. 5, the performance of

each string is associated with an objective function that

Fig. 5 Flowchart of an ANN-GA architecture
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evaluates the fitness of a string for the next generation. As

such, the objective function is referred to as the fitness

function. Considering the fitness values of the strings, the

fittest strings are selected and genetic operators, such as

crossover and mutation, are applied to generate subsequent

generations. This process of selection, crossover, and

mutation is iteratively repeated until a maximum number of

generations are performed. Therefore, with an adaptive

structure GA is able to converge to the best solution

(chromosome) that is either the global or the almost global

optimal solution. The design process of GA is based pri-

marily on four parameters (population size, crossover rate,

mutation rate, and elitist selection), whereas the objective

function is defined according the problem. Here, the

objective function is taken into consideration apart from

the aforementioned four features and only modification to

the objective function is sufficient for changing the GA for

new problems [43–46].

Fitness function of the wrapper approach

A fitness function is used to put forth the degree of

goodness of selected subset. For a classification problem, if

two subsets with different number of features present quite

similar performance, the subset with less number of fea-

tures comes into prominence. Therefore, the evaluation of

fitness function regards two concerns: the classification

accuracy and the number of features in the subset. In order

to satisfy these concerns, the fitness function is designed in

terms of both accuracy and number of features as:

f xj
� �

¼ m � J Xj

� �
þ n � 1= Xj

�� ��� �
ð3Þ

where Xj is the subset constituted by jth chromosome, J(Xj)

is the classification accuracy using Xj, |Xj| is the number of

features of Xj, and m [ [0, 1] and n [ [0, 1] are the two

coefficients used assign relative importance to classifica-

tion accuracy and number of the selected subset

parameters.
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