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� EEG beta band complexity could be a biomarker for treatment resistance in OCD.
� EEG beta band complexity was lower in treatment-resistant OCD patients.
� Severity of illness as measured by Yale-Brown Obsessive Compulsive Scale was inversely correlated

with approximate entropy (ApEn) complexity values.

a b s t r a c t

Objective: This study aimed to identify an Electroencephalography (EEG) complexity biomarker that
could predict treatment resistance in Obsessive compulsive disorder (OCD) patients. Additionally, the
statistical differences between EEG complexity values in treatment-resistant and treatment-responsive
patients were determined. Moreover, the existence of correlations between EEG complexity and Yale-
Brown Obsessive Compulsive Scale (YBOCS) score were evaluated.
Methods: EEG data for 29 treatment-resistant and 28 treatment-responsive OCD patients were retrospec-
tively evaluated. Approximate entropy (ApEn) method was used to extract the EEG complexity from both
whole EEG data and filtered EEG data, according to 4 common frequency bands, namely delta, theta,
alpha, and beta. The random forests method was used to classify ApEn complexity.
Results: ApEn complexity extracted from beta band EEG segments discriminated treatment-responsive
and treatment-resistant OCD patients with an accuracy of 89.66% (sensitivity: 89.44%; specificity:
90.64%). Beta band EEG complexity was lower in the treatment-resistant patients and the severity of
OCD, as measured by YBOCS score, was inversely correlated with complexity values.
Conclusions: The results indicate that, EEG complexity could be considered a biomarker for predicting
treatment response in OCD patients.
Significance: The prediction of treatment response in OCD patients might help clinicians devise and
administer individualized treatment plans.

� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.
1. Introduction

Obsessive compulsive disorder (OCD) is a disabling psychiatric
disorder with a life-time prevalence of 2.3% (Rusico et al., 2010).
The disorder is characterized by obsessions in the form of recurrent
intrusive thoughts, urges, or impulses that cause distress or anxi-
ety, and compulsions in the form of repetitive behaviors performed
to suppress the anxiety or relieve stress associated with obsessions
(DSM-5). The mainstay of the pharmacological treatment of OCD is
clomipramine or selective serotonin reuptake inhibitors (SSRIs),
which yield a response in about 50% of patients (Bystritsky,
2006; Jenike, 2004; Pallanti et al., 2002). Psychological interven-
tions, such as cognitive behavioral therapy (CBT) together with
exposure and/or response prevention, can—in some patients—be
more effective than pharmacological interventions; however, few
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trials have compared the efficacy of psychological interventions
and medications for the treatment of OCD (Skapinakis et al., 2016).

Despite the availability of several treatment options, clinicians
frequently encounter treatment-resistant OCD patients—those that
do not respond adequately to medications or CBT. Numerous fac-
tors might contribute to treatment resistance in OCD patients,
including disease severity, medical or psychiatric comorbidities,
lack of treatment compliance, and exposure to chronic stressors
(Pallanti and Quercioli, 2006).

Storch et al. (2008) reported that the clinical indicator of
treatment-resistance OCD included significantly more obsessions,
compulsions, and internalizing symptoms, together with profound
social dysfunction. A review by Knopp et al. (2013) reported that
the factors associated with treatment outcome in OCD patients
based on clinical profiles include demographic, interpersonal,
symptom-specific, psychological/psychosocial and treatment-
specific variables. More specifically treatment resistance was
potentially associated with increased anxiety, increased OCD
symptom severity, category of OCD symptom subtypes especially
hoarding symptoms as well as non-clinical variables that were
unemployement and being single.

In addition to clinical profiles, individualized treatment plans
based on brain activity, the development of novel pharmacological
and non-pharmacological treatment guidelines, and timely treat-
ment of treatment-resistant patients have become an important
issue. Nonetheless, there are limited number of studies investigat-
ing biomarkers of treatment response in OCD patients (Maron and
Nutt, 2015; Fullana and Simpson, 2016). For instance, there are
several pharmacogenetic studies investigating the relationship
between antidepressant treatment response and genetic factors
in OCD. A review paper by Maron and Nutt (2015) reported that
the genes related to serotonin, glutamate, dopamine systems and
neurothropic factors have been identified as potential predictors
of treatment response. Additionally, a few studies have explored
blood-based predictors of treatment response in OCD. Whole-
blood serotonin concentration, platelet serotonin transporter, 5-
HT2A receptor binding characteristics and platelet IP3 content
are peripheral serotonergic parameters identified as potential pre-
dictors of antidepressant treatment response in OCD.

There are also multiple studies utilizing neuroimaging tech-
nologies to predict treatment response in OCD patients. For
instance, Brody et al. (1998) investigated PET scans in OCD patients
prior to CBT or fluoxetine treatment, and observed that a high level
of left orbitofrontal cortex activity prior to CBT treatment and low-
level left orbitofrontal cortex activity prior to fluoxetine treatment
were associated with treatment response.

MRI findings in OCD patients indicate that there is a positive
correlation between volume of gray matter in the subgenual ante-
rior cingulate (Hoexter et al., 2013) and a negative correlation
between cortical thickness in the rostral anterior cingulate cortex
(Fullana et al., 2014) and the degree of treatment response. Other
researchers used functional neuroimaging techniques to investi-
gate activity in the anterior cingulate cortex (ACC) and orbitofron-
tal cortex (OFC) in OCD patients, observing that—in general—as
metabolic activity before treatment decreased the response to
medication increased (Ball et al., 2014; Shin et al., 2013). Banks
et al. (2015) noted that OCD patients that responded to anterior
cingulotomy had more connectivity between the right ACC and
subcortical brain regions before surgery than those that did not
respond.

The literature includes several studies that used EEG or quanti-
tative EEG (qEEG) for predicting treatment resistance in OCD
patients; however, the findings are inconsistent. For instance, 2
subgroups of OCD patients were described using qEEG data: those
with increased prefrontal theta power, and those with increased
alpha and beta power (Prichep et al., 1993). Interestingly Prichep
et al. (1993) and Hansen et al. (2003) reported that the increased
theta power subgroup did not respond to treatment, whereas the
increased alpha and beta power subgroup did respond to pharma-
cological treatment.

Koprivova et al. (2013) explored predictors of treatment
response and EEG correlates of clinical symptoms and reported
that high delta, low alpha, and low beta2 power were associated
with a lower rate of response to independent component neuro-
feedback treatment in OCD patients. Krause et al. (2016) obtained
EEG recordings in OCD patients before standardized treatment
with sertraline and CBT, and based on low-resolution brain electro-
magnetic tomography (LORETA) analysis reported that treatment
responders had significantly lower activity in the beta1, beta2,
and beta3 bands, and lower activity in the alpha2 band, as com-
pared to non-responders.

Considering the cost-effective and non-invasive nature of EEG,
its use to identify potential predictors of treatment resistance in
OCD patients could ultimately help to devise individualized treat-
ment plans and improve our understanding of OCD. On the other
hand, given the heterogeneity of earlier studies and their inconsis-
tent findings, we think more consistent EEG biomarkers are
needed. In this regard, advanced signal processing methods might
help in identifying new biomarkers and subtypes for prediction of
treatment resistance in OCD patients. Interpreting EEG signals in
terms of the power spectrum in different frequency bands is a very
common approach (Pogarell et al., 2006; Moretti et al., 2004;
Hansen et al., 2003; Tot et al., 2002; Sponheim et al., 2000;
Kuskowski et al., 1993; Prichep et al., 1993). The primary short-
coming of using the power spectrum of oscillations to identify
OCD subgroups, as did Hansen et al. (2003) and Prichep et al.
(1993), is that these measures indicate only the general power of
the corresponding oscillations and do not provide additional data
related to signal characteristics. Considering the complex, irregu-
lar, and possibly nonlinear and nonstationary nature of EEG sig-
nals, analysis of nonlinear complexity features is considered a
potential approach for improving the characterization of these
signals.

In the context of mental disorders, the primary aim of using EEG
complexity measures has been to investigate the existence of
abnormal brain activity in patients with Alzheimer disease,
schizophrenia, autism spectrum disorders, and mood disorders
(Fernandez et al., 2013; Takahashi, 2013). While interpretation of
EEG complexity varies based on physiological parameters and the
research question under consideration, studies have shown that
those with mental disorders are often associated with low or high
complexity, as compared to healthy controls (Catarino et al., 2011;
Fernandez et al., 2011, 2010a, 2010b; Mendez et al., 2012; Stam,
2005). These types of studies show that EEG complexity could be
used as a biomarker for differentiating controls, and patients with
OCD (Aydin et al., 2015), depression (Sabeti et al., 2009),
schizophrenia (Sabeti et al., 2009; Li et al., 2008) and autism spec-
trum disorders (Catarino et al., 2011).

The primary aim of the present study was to determine the effi-
cacy of a nonlinear complexity measure, namely approximate
entropy (ApEn), as a biomarker for predicting treatment resistance
in OCD patients. ApEn is a nonlinear complexity index that is
robust to noise and provides stable results, even when using short
data segments, rendering it a potential feature for characterization
of EEG signals (Sun et al., 2017; Pincus, 1995). In the first part of
the study the ability of the ApEn complexity extracted from whole
EEG data (0.01–62.5 Hz) and EEG data filtered using 4 common fre-
quency bands, namely delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–
12 Hz), and beta (12–24 Hz), to differentiate between treatment-
resistant and treatment-responsive OCD patients has been investi-
gated. The frequency band with the highest discrimination ability
(as measured by classification accuracy) was then further investi-
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gated to determine the most discriminative channels. Additionally,
the most discriminative channel and band combinations was
investigated. In the next part of the study the complexity differ-
ences between the treatment-resistant and treatment-responsive
OCD patients were compared. Additionally, the correlation
between EEG complexity and the severity of OCD (as measured
by the Yale Brown Obsessive Compulsive Scale [YBOCS] score)
was investigated.
2. Methods

2.1. Patients

The study included OCD patients diagnosed at Uskudar Univer-
sity Outpatient Clinic, Istanbul, Turkey, between December 2015
and December 2017. OCD was diagnosed by 2 psychiatrists via
the Structured Clinical Interview for DSM-5 (SCID-5) (Elbir et al.,
2019). All the patients were medication free for at least 2 weeks
prior to EEG acquisition. Treatment response was evaluated
retrospectively.

The treatment-responsive group included 29 patients (15 male
and 14 females) aged 18–48 (mean age: 29 years) and the
treatment-resistant group included 28 patients (9 male and 19
female) aged 19–65 years (mean age: 31 years). There weren’t
any significant differences in age or gender between the 2 groups
(p > 0.6). The mean initial YBOCS score in the treatment-
responsive group was 24, versus 28 in the treatment-resistant
group (p < 0.05). The cutoff YBOCS score for inclusion in the study
was 16.

Treatment resistance was defined as a lack of meaningful
improvement in OCD symptoms (defined as a <35% decrease in
the YBOCS score) after pharmacotherapy that included adequate
trials (3 months of the maximum recommended dose by the US
FDA) of �3 SSRIs, augmentation of SSRI treatment with a neurolep-
tic (Bloch et al., 2006), with a benzodiazepine (Starcevic et al.,
2016), and �20 sessions of CBT (exposure and response preven-
tion) (Rauch et al., 1994). OCD treatment was generally initiated
with SSRIs, and based on response the clinician could switch to
another SSRI or clomipramine. Inadequate response to SSRIs and
clomipramine prompted augmentation strategies, using neurolep-
tics, benzodiazepine, and CBT.

In the treatment-responsive group 9 patients were treated with
medications only, and 19 patients were treated with medications
and CBT. As 1 of the patients was pregnant and treated with CBT,
her treatment was switched to medications when she could no
longer go to CBT.
2.2. EEG data

EEG was recorded at 125 Hz during 3 min with patients at rest
with eyes closed, and using 19 electrodes (Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, F8, T7, T8, P7, P8, Fz, Cz, and Pz) placed on the
scalp based on the international 10–20 system. Brain Vision Ana-
lyzer v.2.1.2 software was used (https://www.brainproducts.com)
for preprocessing and data analysis. Prior to artefact rejection pro-
cessing, EEG data were filtered between 0.01 Hz and 62.5 Hz, and a
notch filter (50 Hz) was used to remove electricity network arte-
facts. Eye movement artefacts were rejected automatically using
Ocular Correction ICA (Makeig et al., 1995) and other types of arte-
facts, such as muscle artefacts, were rejected using raw data
inspection. Then, data were exported to a text file in the ASCII for-
mat using the generic data export tool in Brain Vision Analyzer
software.
2.3. Feature extraction

ApEn is a measure of complexity/irregularity/disorder in time
series data. Higher ApEn values correspond to higher complexity/-
greater irregularity and, conversely, lower ApEn values indicate the
existence of repetitive patterns in time series data (Pincus, 1995).

Originally, ApEn is calculated by assuming we have EEG time
series from a single channel with N data points, and
X ¼ ½X1;X2;X3; ::;XN�, a sequence of vectors (V), are constructed as
follows;

V ¼ ½v1;v2;v3; � � � ; vM � ð1Þ

v i ¼ Xi;Xiþ1;Xiþ2; � � � ;Xiþðm�1Þ
� � ð2Þ

For i = 1,2,3,. . .,M,whereM is N-(m-1), that is the number of vec-
tors and m is the length of the vectors; however, we previously
determined that when ApEn is used as a feature for classification
of physiological signals, such as EEG and ECG, using a sequence
of vectors reconstructed in state space using time delay embedding
instead of the original version described above provides better sep-
arability, as described earlier (Balli and Palaniappan, 2010; Dyson
et al., 2008; Takens, 1981). In this case, vector V is defined as;

V ¼ ½v1;v2;v3; � � � ; vM � ð3Þ

vi ¼ Xi;Xiþ1s;Xiþ2s; � � � ;Xiþðm�1Þs
� � ð4Þ

For i = 1,2,3,. . .,M, where M is N-(m-1)s, that is the total number
of embedded vectors in state space, m is the length of the vector
(referred to as the embedding dimension in the context of time
delay embedding) and s is time lag.

The remainder of the ApEn estimation procedure for both the
original and modified versions described above is the same, where
for each of the vectors vi, the correlation integral ðCm

i ) that enumer-
ates the number of vectors vj (i – j) that are closer to vi than a tol-
erance value r, is calculated as;

Cm
i ¼

XM

j¼1

Hðr � kv i � v jkÞ
M

ð5Þ

where M = N-(m-1)s is the number of embedded vectors, kvi � vjk is
the Euclidean distance between vectors vi and vj, b(x) = 0 for x > 0,
and b(x) = 1 for x � 0.

Finally, ApEn is calculated as;

ApEn m; s; rð Þ ¼ Um rð Þ �Umþ1ðrÞ ð6Þ

Um rð Þ ¼ 1
M

XM

i¼1

ln½Cm
i ðrÞ� ð7Þ

ApEn measures the likelihood that vectors that are close to each
other for m observations remain close for m + 1 observations.
Greater likelihood of remaining close, which can also be defined
as regularity, yields smaller ApEn values and vice versa.

The 3 input parameters, m (length of vector), s (time lag), and r
(tolerance of comparison), must be fixed to estimate ApEn. Most
published studies suggest that s can be estimated using first zero
crossing of the autocorrelation function and m can be estimated
using the false nearest neighbors method (Stam, 2005); however,
earlier research has shown that different values ofm and s can lead
to greater separability of ApEn complexity features in EEG data
(Balli and Palaniappan, 2010; Dyson et al., 2008); thus, in the pre-
sent study ApEn values were extracted form values starting from 2
to 5 and s values starting from 1 to 10 to determine if ApEn with
different parameter settings resulted in greater classification accu-
racy. Originally ApEn is estimated using an r value that is 0.1–0.25
times standard deviation of time series data (Pincus, 2006, 1995;

https://www.brainproducts.com
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Abásolo et al., 2005); however, earlier studies show that using a
fixed r value will increase the discrimination rate for classification
of mental task EEG using ApEn as a feature (Dyson et al., 2008).
Thus, in the present study fixed r values starting from 0.1 to 1.0
with increments of 0.1 were used. Note that the r value range
was tested based on classification results where the discrimination
ability of ApEn would reach a plateau or decrease with higher val-
ues of r, indicating that increasing the r value would not improve
classification accuracy. Accordingly, the ApEn features were
extracted for 4 length of vector values (m) � 10 time lags (s) � 10
tolerance of comparison (r) values, resulting in 400 different param-
eter combinations. Each feature set extracted with different
parameter settings was classified and the parameter set leading
to highest classification accuracy was selected as optimal.

2.4. Feature selection and classification

Filter and wrapper methods are the standard approaches for
feature selection (Blum and Langley, 1997). Using the filter
method, the optimal feature subset is selected independent of
the classification algorithm. The statistical characteristics of the
training data, such as distances between classes or the variance
of features within the same class, are used to select the features.
On the other hand, the wrapper method utilizes a predetermined
classification algorithm for evaluating performance of feature com-
binations, so as to determine the optimal feature subset.

In the present study a wrapper-based approach known as the
sequential floating forward selection (SFFS) algorithm along with
a Random Forests (RF) classifier was used. The SFFS method is a
combination of sequential forward selection (SFS) and sequential
backward selection (SBS) algorithms.

The SFS algorithm is an iterative algorithm that starts with an
empty optimal feature subset. In the first iteration each feature
in the candidate feature set is evaluated based on its classification
accuracy and the feature that yields the highest accuracy is
included in the optimal feature subset. In the second iteration
the combination of features in the optimal feature subset with each
feature in the candidate feature set is evaluated, and the feature
that yields the highest classification accuracy is added to the opti-
mal feature subset. This process of evaluating the combinations of
each feature in a candidate feature set with the optimal feature
subset and adding the best feature to the optimal feature subset
is repeated until the maximum number of features is reached.

Conversely, the SBS algorithm starts with an optimal feature
subset that contains a complete candidate feature set. Each feature
in the candidate feature set is evaluated and the least significant
feature whose removal yields the least decrease or most improve-
ment to classification performance is removed from the candidate
feature set. This process of removing features from a candidate fea-
ture set is repeated until the desired number of features is reached.

The problem with both algorithms is that they result in a nested
feature subset, which in the case of SFS added features have no
chance of removal and in the case of SBS the removed features
have no chance of being used in later iterations; thus, solutions
may get stuck in a local minimum, leading to a suboptimal feature
subset (Pudil et al., 1994). The SFFS method overcomes the prob-
lem of being stuck in a local minimum by combining the SFS and
SBS methods. The optimal feature subset is created by iterating
through growing (SFS) and pruning steps (SBS), respectively.

For the growing step the most significant feature (leading to
highest classification accuracy) is added to the optimal feature sub-
set. The pruning step is performed only if the size of the optimal
feature subset is > 2. During the pruning step the least significant
feature is removed from the optimal feature subset and added back
to the candidate feature set if its removal improves classification
performance. This step is repeated while the optimal feature sub-
set size is > 2 and removal of the least significant feature improves
the classification accuracy of the optimal feature subset. The inclu-
sion and pruning steps are repeated until the maximum number of
features or maximum number of iterations is reached. In the pre-
sent study the maximum number of iterations was 100.

The RF method was used in the present study for classification
of EEG complexity features. RF is composed of many independent
decision trees. The RF classifier is known to run efficiently on large
datasets; RF can handle a large number of input features and has
its own internal feature selection/rating structure with which deci-
sion boundaries are created by growing decision trees using fea-
tures with higher ratings (Breimann, 2001). In the present study
the RF algorithm was trained and tested using 10-fold cross valida-
tion. In each fold the RF algorithm steps were as follows;

(1) The training data were used to create a new data set with
bootstrapping. In bootstrapping typically 2/3 of the training
data are used (in-bag samples).

(2) The bootstrapped data set was used to create a decision tree.
(3) Each split of the decision tree was determined using a ran-

domly selected subset of attributes/features in the boot-
strapped dataset.

(4) The remaining 1/3 of unused training data (out-of-bag sam-
ples) were used to test the performance of the decision tree.

(5) Steps 1, 2, 3, and 4 were repeated k times to create a random
forest with k trees.

The size of the attribute subset that is used while creating the
decision tree needs to be optimized, which is achieved by minimiz-
ing the overall error rate of the decision trees tested with out-of-
bag samples; therefore, steps 1, 2, 3, 4, and 5 are repeated by
changing the size of attribute subset. The number of decision trees
used for RF in the present study was 100. It was confirmed that the
classification accuracy would not improve by increasing the num-
ber of trees in RF. Fig. A.1 in Appendix A shows the flow diagram of
RF classification process.
2.5. ApEn parameter settings and analysis procedure

ApEn complexity features were extracted from whole EEG data,
as well as EEG data filtered using 4 common frequency bands,
namely delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta
(12–24 Hz). ApEn complexity features were extracted from EEG
data using a window of 125 samples (1-s segments) with no over-
lap. The present study’s dataset was composed of 29 treatment-
responsive and 28 treatment-resistant OCD patients’ EEG record-
ings. There were 3 min of EEG recordings for each patient, resulting
in a 19-channels � 180-s feature vector per patient for each fre-
quency band.

ApEn parameters were selected using an exhaustive search
approach, in which length of vectors (m), time lag (s), and toler-
ance of comparison (r) parameter combinations yielding the high-
est classification accuracy were selected as optimal. The
classification accuracy of ApEn versus r and s parameters for whole
data and individual frequency bands are presented in Fig. 1. Only
the results form = 2 are shown, as this setting provided the highest
classification accuracy with respect to parameter m. The graphs in
the figure show that as the value of r increased the classification
accuracy would either reach a plateau or decrease, indicating that
increasing the r value would not further improve the classification
accuracy of the ApEn feature.

Parameters (resulting in the highest classification accuracy) for
the ApEn complexity features extracted from the beta band EEG
segments were selected as m = 2, s = 5, and r = 0.7. Parameters
for ApEn extracted from whole data, alpha, delta, and theta bands
were selected asm = 2, s = 1, and r = 0.4. It should be noted that the



Fig. 1. Classification accuracy of approximate entropy (ApEn) versus r and s parameters for whole data and individual frequency bands for m = 2.
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parameter selection process was not a part of the cross validation
process. Feature vectors extracted with different parameter set-
tings were used individually to train and test the RF classifier,
and the parameter settings that yielded the highest classification
accuracy were selected as optimal.
3. Results

Accuracy, sensitivity, and specificity of classification (between
treatment-responsive and treatment-resistant OCD patients)
according to each frequency band are given in the Table 1. The
greatest ability to discriminate between treatment-responsive
and treatment-resistant OCD patients (89.66%) was obtained from
beta band EEG segments (sensitivity: 89.44%; specificity: 90.64%).
Note that these classification results were obtained using all fea-
tures from each band (without feature selection).

The SFFS method was used to determine the most discrimina-
tive channels in whole EEG data and each frequency band. In all
cases, using all 19 channels provided the highest classification
accuracy, indicating that all features had a positive contribution
to the classification process. Next, features extracted from whole



Table 1
The accuracy, sensitivity, and specificity of classification based on whole electroen-
cephalography (EEG) data and each frequency band (without feature selection).

Frequency Band Accuracy Sensitivity Specificity

Whole EEG 77.52% 77.58% 74.55%
Delta Band 68.14% 69.23% 62.54%
Theta Band 73.91% 74.06% 63.73%
Alpha Band 73.65% 73.79% 68.75%
Beta Band 89.66% 89.44% 90.64%
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EEG data and all bands were grouped together, and the SFFS fea-
ture selection algorithm was applied to identify the most discrim-
inative channel and band combinations that could improve the
classification accuracy, as compared to individual EEG frequency
bands. There were 19 channels � 5 frequency ranges (4
bands + whole data) for a total of 95 features. Among the 95 fea-
tures, 14 features were selected as the most discriminative feature
combination, yielding an accuracy of 91.55% (sensitivity: 91.58%;
specificity: 91.36%). The number of selected features was chosen
based on the convergence of classification accuracy with the
increasing number of features. The selected features were, as fol-
lows: Beta band channels Fp2, T8, O1, T7, Fp1, C4, O2, F7, Fz, P8,
P7, and F4; alpha band channels Fp1 and P8. These findings show
that beta band features were selected predominantly as the most
discriminative features, which is in agreement with the classifica-
tion results based on individual frequency bands showing that the
beta band provided the highest classification accuracy, as com-
pared to whole EEG, delta, theta, and alpha bands.

In the second part of this study the 2 patient groups were com-
pared in terms of ApEn complexity values extracted from the beta
band. A channel-wise comparison was performed first, which
showed that ApEn complexity values differed significantly
between the treatment-responsive and treatment-resistant
patients in all channels, except for channel F8 (Mann-Whitney U-
test, p < 0.05).

Fig. 2 shows the topographic plot of the averaged ApEn com-
plexity values in the 2 groups over each channel in the beta band.
The plot shows that beta band complexity (irregularity) was higher
in the EEG segments in the treatment-responsive group than in the
treatment-resistant group.

Figs. 3 and 4 show the topographic plots of ApEn features
extracted from the beta band averaged over all samples for each
channel and each patient. Apart from a few exceptions, the general
trend in the plots follow Fig. 2; the complexity values in the
treatment-responsive group were higher than in the treatment-
resistant group.

Finally, the relationship between YBOCS score and ApEn com-
plexity values was investigated using Pearson’s correlation analy-
Fig. 2. Topographic plot of the averaged approximate entropy (ApEn) complexity values
responsive and treatment-resistant obsessive compulsive disorder (OCD) patients.
sis. The relationship was investigated without taking group data
into account. The linear models showed that the trend was for a
negative correlation in all channels; ApEn complexity decreased
as YBOCS score increased. Moreover, this trend was statistically
significant (p < 0.05) in channels Fp2 (r = �0.287), C4
(r = �0.294), P3 (r = �0.306), P4 (r = �0.300), O1 (r = �0.289), F7
(r = �0.331), F8 (r = �0.313), and Pz (r = �0.208), indicating that
there was a negative correlation between YBOCS score and ApEn
complexity values.
4. Discussion

The present study explored the use of ApEn complexity as a bio-
marker for identifying treatment-resistant OCD patients. Addition-
ally, differences in EEG complexity between treatment-responsive
and treatment-resistant OCD patients were investigated. Lastly, the
correlation between ApEn complexity and YBOCS score was inves-
tigated in all patients. The findings indicate that ApEn complexity/
irregularity extracted from EEG beta band segments could be con-
sidered a promising method for discriminating between
treatment-responsive and treatment-resistant OCD patients. Fea-
ture selection using complexity features extracted from whole data
and each frequency range (delta, theta, alpha, and beta) was con-
sistent with the classification accuracy based on individual fre-
quency bands, where features extracted from the beta band were
the most discriminative. Further analysis based on the complexity
values extracted from EEG beta band segments showed that the
complexity was higher in the treatment-responsive OCD patients
than in the treatment-resistant OCD patients (lower entropy).
Moreover, the severity of OCD based on YBOCS score was inversely
correlated with ApEn complexity values; YBOCS score increased as
the complexity decreased.

These present study’s findings have a number of implications.
First, the lower complexity in treatment resistant patients indi-
cates the existence of similar patterns in EEG segments. The com-
plexity was lower in all brain regions, including the frontal
temporal and central regions. Current theories on neuropsychology
of OCD point to abnormalities in the frontostriatal networks
(Menzies et al., 2008). Earlier studies indicate that the severity of
mental diseases generally increases as ApEn complexity decreases
(Pincus et al., 2006; Abásolo et al., 2005). As the relationship
between ApEn and frontostriatal dysfunction remains to be fully
elucidated, future studies should evaluate this relationship. In
addition, it was observed that patients with OCD have lower per-
mutation entropy values than healthy controls (Aydin et al.,
2015). In total, these earlier findings, as well as the present find-
ings, suggest that OCD patients not only have lower complexity,
extracted from electroencephalography (EEG) beta band segments in the treatment-



Fig. 3. Topographic plot of the approximate entropy (ApEn) complexity values extracted from the treatment-responsive obsessive compulsive disorder (OCD) patients.

Fig. 4. Topographic plot of the approximate entropy (ApEn) complexity values extracted from the treatment-resistant obsessive compulsive disorder (OCD) patients.
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Fig. A.1. Flow diagram of random forests (RF) classification.
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but also that the degree of complexity is correlated with greater
frontostriatal alterations, leading to treatment resistance and an
increase in the severity of OCD.

The second implication of the present findings is related to pre-
dicting which OCD patients will and will not respond to treatment.
As described in the introduction, it has been reported that EEG
could be used to predict treatment response; however, most of
these earlier studies measured the power spectrum (Koprivova
et al., 2013; Hansen et al., 2003; Prichep et al., 1993) and studied
only a single treatment modality (SSRI or neurofeedback). In the
present study the non-response criteria was stricter —patients
were determined to be non-responders after a long follow-up
and trial of several treatment options. In addition, in contrast to
those earlier studies, the present study used a nonlinear complex-
ity measure (ApEn) that quantifies the existence of similar patterns
in EEG segments. The present findings clearly show that signal
complexity is reduced in OCD treatment non-responders. The clas-
sification performance of signal complexity was sufficiently high as
to justify its use in clinical practice if confirmed by additional
research. EEG complexity might be used confidently in the future
to predict and manage treatment resistance in OCD patients. For
instance, patients with decreased complexity might be managed
more aggressively and could be referred for neuromodulation
treatments, such as transcranial magnetic stimulation (TMS)
(Carmi et al., 2019), early in the course of the disease, or psy-
chosurgery (Tastevin et al., 2019) could be considered before
sequential trials of several medications.

The present study has some limitations; the parameters of
APEN method were selected using an exhaustive search approach
where feature vectors, created with all possible parameter combi-
nations, were trained and tested and the parameter set leading to
the highest classification accuracy was selected as optimal. How-
ever, parameter selection itself was not a part of the cross valida-
tion process. Thus, the optimal parameters for APEN method
needs to be validated by different datasets. Furthermore, treatment
resistance was evaluated retrospectively. Prospective follow-up
studies might provide more useful data concerning the efficacy of
EEG complexity for predicting treatment resistance in OCD
patients. In addition, whether or not the response to other treat-
ments, such as TMS, could be predicted was not investigated. The
sample size was limited, as only 28 OCD patients with
treatment-resistance were identified. Finally, the treatment-
resistant group had significantly higher YBOCS scores at the time
of EEG recording than did the treatment-responsive group
(p < 0.05); this difference in the severity of OCD might account
for some of the observed group differences in EEG-based measure-
ments. The present findings, although promising, should be con-
firmed by other studies.
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