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(LORETA) with different methods such as standardized 
LORETA (sLORETA) and exact LORETA (eLORETA).

Although each modality provides different and valuable 
information about brain structures and/or activity, researchers 
began combining multiple techniques, referred to as multi-
modal neuroimaging (MN), to compensate for the limitations 
of each modality, so as to understand brain dynamics with 
greater detail (see next section). Generally, there are 3 
approaches to MN: (a) visual inspection, (b) data integration, 
and (c) data fusion2 (see section “Principles of Data Fusion”). 
Nonetheless, according to Correa et al,3 unlike data integration 
methods, data fusion facilitates true interaction between differ-
ent types of data. In literature, data fusion can be categorized as 
asymmetric or symmetric, and each category uses a variety of 
techniques, including principal component analysis (PCA), 
independent component analysis (ICA), and general linear 
models (see section “Principles of Data Fusion”).

Interpretation of findings and identification of biomarkers, 
especially for neuropsychiatric diseases, is not always an easy 
process, regardless of the use of unimodal neuroimaging (single 
neuroimaging technique) or MN4; therefore, neuroimaging 
studies that use machine learning (ML) as a prognostic/diagnos-
tic tool are becoming more common. Classification is one of the 
ML techniques used for modeling (decoding) and predicting 
categorical variables and includes different methods such as 
support vector machine (SVM) classification, which is the most 
commonly used method among other classification methods. 
The other MN techniques are regression and clustering (see sec-
tion “Decoding Mental States Based on Classification”).

This literature review aimed to (a) provide a brief summary 
and basic information about MN techniques (data fusion 
approaches in particular) and classification approaches, (b) 
describe various techniques of data fusion and classification for 
use in psychiatry, and (c) provide an overview of how data 
obtained from multiple imaging techniques (eg, EEG and 
fMRI) are combined via data fusion and how psychiatric dis-
eases are classified using such combined data. The literature 
was searched via PubMed, Science Direct, Web of Science, and 
Google using the following keywords: multimodal; neuroim-
aging; fusion; data integration; univariate; multivariate; psy-
chiatry; neuropsychiatric diseases; mental disorder; bipolar; 
schizophrenia; psychosis; attention-deficit hyperactivity disor-
der; major depressive disorder; depression; classification; 
machine learning; pattern recognition; accuracy. The search 
also focused on studies published after 2010 that differentiated 
patients and controls based on MN and data fusion.

The following section includes a brief description of uni-
modal neuroimaging (single-technique neuroimaging) tech-
niques, an informative introduction to MN and different 
approaches for combining data obtained using multiple uni-
modal techniques, and a survey of studies based on MN tech-
niques—especially psychiatry studies. The subsequent section 
provides an overview of classification techniques used for 
decoding brain activity and of studies that differentiated 
patients and healthy controls based on single neuroimaging 
modality. In addition, studies on the accuracy of MN are 

reviewed, so as to illustrate the effectiveness of the data fusion 
process.

Application of Neuroimaging: From 
Unimodal to Multimodal

The unimodal concept refers to use of a single neuroimaging 
technique that measures electrophysiological or hemodynamic 
signals. The literature includes many comprehensive reviews 
that explain these neuroimaging techniques in detail, including 
their advantages and limitations1,5-14; an overview of these 
techniques is presented in Table 1.

In addition, the literature includes many studies on neuropsy-
chiatric diseases based on various unimodal techniques. A review 
by Phillips and Swartz15 describes several studies on bipolar dis-
order (BD) that used fMRI, volumetric analysis, DTI, and resting 
state techniques. There is also study that compared EEG data in 
BD during manic and depressive episodes.16 Furthermore, sev-
eral studies focused on neuroimaging biomarkers for major 
depressive disorder (MDD)17 and schizophrenia (SZ),18,19 and 
comparing patients diagnosed with SZ and MDD,20 using 
sLORETA. An informative overview of neuroimaging tech-
niques for all neuropsychiatric diseases can be found in Malhi 
and Lagopoulos6 and Hughes and John21; however, as mentioned 
earlier each neuroimaging modality has specific technological 
and physiological limitations that are leading to more wide-
spread use of MN among neuroscientists. Bießmann8 presents an 
extensive description of the progression of neuroimaging from 
unimodal neuroimaging to MN with a history flow that includes 
important advancements in neuroscience.

What Is Multimodal Neuroimaging?

In general, MN is an approach that combines data sets obtained 
using ⩾2 unimodal modalities, such as EEG and fMRI integra-
tion (referred to as neurovascular coupling),8,22 which is the 
most common MN approach,23-25 to yield more informative, 
consistent, and reliable results than can be obtained using uni-
modal neuroimaging. Uludağ and Roebroeck26 define MN in 2 
terms: (a) narrow sense and (b) wider sense. In the narrow 
sense, MN refers to the combination of data obtained from dif-
ferent instruments (separately recorded modalities). In this 
sense, the combination can be between modalities that either 
separately analyzed or jointly analyzed (see section “Decoding 
Mental States Based on Classification”). In the wider sense, 
MN is defined as the combination of data recorded with the 
same physical instrument (simultaneously recorded).

Although MN poses its own challenges, such as sample size 
and number of dimensions (see Lahat et al,27 Bießmann et al,28 
and references therein), it has several advantages over uni-
modal neuroimaging, including higher spatial and temporal 
resolution, and provision of more comprehensive information 
regarding neural processes, structures, quantification, general-
ization, and normalization,26,28 and overcomes the limitations 
of unimodal techniques.8 Thus, MN can play an important role 
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in the detection, diagnosis, prognosis, and treatment of some 
diseases like neuropsychiatric diseases1 (Table 2).

With MN there are multiple ways to combine data obtained 
from different unimodal modalities. Calhoun and Sui2 catego-
rized MN approaches as follows: (a) visual inspection: uni-
modal analysis results are visualized separately; (b) data 
integration: data obtained with each unimodal technique are 
analyzed individually and then overlaid, which prevents any 
interaction between different types of data29; (c) data fusion: 
one modality constrains another modality (asymmetric data 
fusion) or all modalities are analyzed jointly (symmetric data 
fusion) (for more details about data fusion, see section 
“Decoding Mental States Based on Classification”). The most 
qualitative data are obtained via the data fusion approach, fol-
lowed by data integration and visual inspection.2,7

Liu et al1 documented the rapid progression of MN research 
from 1975 to 2014 in an extensive literature review. Published 
studies have used various combinations of 2 or more unimodal 
modalities, such as structural-structural (eg, sMRI + DTI), 
functional-functional (eg, EEG + fMRI), and structural-func-
tional (eg, fMRI + DTI); related studies can be found in Sui 
et al,30,31 Bießmann et al,28 Calhoun and Sui,2 and Schultz 
et al,32 and Ahn and Jun.33

Principles Of data Fusion

Lahat et al27 define data fusion as, “the analysis of several datas-
ets, such that different datasets can interact and inform each 
other.” According to Calhoun and Adalı,7 data fusion is a process 
that utilizes multiple image types simultaneously in order to take 
advantage of the cross-information. Simply stated, data fusion is 
the analysis of ⩾2 brain imaging modalities collectively.3

Calhoun and Sui2 show cumulatively increment for usage of 
data fusion, including 2-way and N-way fusion, which refers to 
a combination of ⩾2 modalities, where N is the number of 
modalities.34 Furthermore, Wolfers et al35 emphasize the impor-
tance of combining data from multiple sources in cases of psy-
chiatric diseases that are affected by multiple factors. In 
contrast, Lahat et al36 highlighted some of the challenges asso-
ciated with data fusion, including data-related problems (eg, 
different resolution, inconsistent data), level of data fusion (eg, 
data integration), model, and theoretical validation.

Data fusion methods are generally divided into 2 groups: 
symmetric and asymmetric. With the asymmetric data fusion 
approach data obtained using 1 modality are used to guide the 

analysis of data obtain via another modality.37 For example, 
data obtained via EEG can be used as a regressor in the analysis 
of fMRI data in order to extract voxels that correlate with the 
EEG regressors (EEG constrains fMRI analysis), or fMRI con-
strains EEG source localization problem with the spatial infor-
mation (fMRI constrains EEG analysis) (see He and Liu38 and 
references therein). On the other hand, the most commonly 
used data fusion approach for MN is symmetric data fusion, 
which is used to simultaneously analyze data sets collected 
using multiple modalities. Symmetric data fusion is sub-
grouped (Figure 1) as modal driven (hypothesis driven)39 and 
data driven, both of which include a variety of fusion methods 
(for more information, see Valdes-Sosa et al39).

Data fusion methods can be univariate (eg, correlation and t 
tests) or multivariate (eg, ICA and PCA). Univariate pattern 
analysis is used to examine the mean difference between 2 con-
ditions, so as to understand whether or not there is consistency 
across patients40 whereas multivariate pattern analysis (MVPA) 
is used to identify correlated patterns (components) between 
multiple datasets (obtained via ⩾2 modalities). MVPA (also 
known as multivoxel pattern analysis, in the context of fMRI 
analysis) has some advantages over the univariate approach; 
for example, it provides robustness to noise.2

Although individual predictions can be made using univari-
ate techniques (SZ,41 BD42,43), MVPA can integrate various 
data in an efficient way, in addition to identify biomarkers.35 
Various methods are used for MVPA, including PCA,44 joint 
ICA (jICA),2,45 parallel ICA (pICA),46,47 canonical correlation 
analysis (CCA),3 temporal kernel canonical correlation analy-
sis (tkCCA),48 partial least squares (PLS),49 linked ICA,50 
LASSO (least absolute shrinkage and selection operator),51 and 
coefficient-constrained ICA (CC-ICA),52 as well as combina-
tions of these methods, including mCCA + jICA (SZ29,53,54, 
obsessive-compulsive disorder [OCD]55). As this literature 
review did not aim to explain these methods, more details can 
be found in the cited studies. Additionally, the literature 
includes several extensive reviews that mention listed multi-
variate analyses above and other more.51,56

Decoding Mental States Based on 
Classification

Decoding aids predicting the course of diseases using brain sig-
nals.57,58 For this purpose, a model is used to examine signifi-
cant differences, for example between patients and healthy 
controls. This model can be based on simple statistical methods 
(eg, grand averages and between-group differences)59 or more 
complicated ML algorithms (eg, regression analysis and clas-
sification algorithms).60 Although some challenges (such as 
sample size) remain,60 interest in the use of ML algorithms for 
decoding brain activity continues to increase.61,62

ML is a common name for several algorithms which iden-
tify patterns in data for making predictions.63 These algorithms 
are generally grouped into 2 methodological categories: super-
vised and unsupervised (Figure 2).64 Supervised learning algo-
rithms use known (predefined) input and output data, and then 

Table 2. Advantages and Limitations/Challenges/Bias of the 
Multimodal Neuroimaging Approach.

Advantages
Limitations/Challenges/

Bias

•• Exploratory
•• Robust and redundant
•• Unique and identifiable solution
•• High spatiotemporal resolution
•• Improved data quality

•• Noncommensurable
•• Different resolutions
•• Number of dimensions
•• Inconsistent data
•• Sample size
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train a model to generate reasonable predictions about the 
response to new data. Conversely, unsupervised learning algo-
rithms does not know what the data (not predefined) for 
attempting to identify patterns and are most commonly used to 
identify hidden patterns in data.

According to the literature, supervised learning classifica-
tion techniques are primarily used for making predictions (eg, 
different diseases) rather than regression analysis (eg, general 
linear models, decision trees, PLS, and linear regression). 
Various classifiers can be used to make a prognosis or 

diagnosis, the most commonly used classifiers are as follows: 
generative models—SVM,65 deep learning,66 and logistic 
regression67; discriminative models—Gaussian process classi-
fiers,68 multiple stepwise discriminant analyses,69 and linear 
discriminant analysis.70 There is a comprehensive review71 that 
mentioned advantages and limitations of various classification 
techniques in using bioinformatics and neuroimaging.

There is a lack of consensus concerning how to choose the 
most appropriate classifier,64 hence there are several studies 
have attempted to determine which is the most powerful 

Figure 2. Categorization of machine learning techniques.

Figure 1. Data fusion techniques.
Abbreviations: EEG, electro encephalography; fMRI, functional magnetic resonance imaging; MEG, magnetoencephalography; ICA, independent component 
analysis; PCA, principal component analysis; CCA, canonical correlation analysis; PLS, partial least squares.
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classification method for identifying the classes by comparing 
the performance of multiple classifiers.72-75

The Basic Classification Process

The classification process includes several steps: feature 
extraction, feature selection (reduction), and classification 
(training and testing/validation).35,63-65,76-78 Feature extraction 
involves the transformation of original data into a form  
(feature* vector) that is meaningful to the classifier; this step is 
mandatory. During the feature selection (reduction) step, more 
important and/or redundant features are selected for differenti-
ation between classes. Although this step has the potential to 
improve classification performance,64,79 it is optional. Feature 
selection can be accomplished using various methods (see sec-
tion “Principles of Data Fusion”), but the most commonly used 
methods are PCA and ICA, both of which are dimensionality 
reduction techniques. PCA extracts the most important charac-
teristics from data and ICA identifies the components of the 
data that are mutually independent. Classification consists of 2 
substeps: training and testing (validation). Training is used to 
teach an application to correctly classify data. All classifiers 
listed above can be used, but SVM62,65 is widely considered the 
most powerful training method. For the testing substep, cross-
validation methods (eg, leave-one-out cross-validation/jack-
knife, k-fold cross validation, and holdout)64 are used to 
estimate how well a model has been trained. Sensitivity,  
specificity, and accuracy are the most commonly reported  
measures63 a of classifier’s performance,† and sample size is a 
very important parameter related to measurement accuracy; as 
sample size increases measurement accuracy decreases.80

Multimodal Neuroimaging and Classification: 
Classification of Psychiatric Diseases Based on MN 
and Data Fusion Approaches

In recent years, the number of studies based on supervised 
learning algorithms, especially in a classification framework 
(eg, SVM, Gaussian naive Bayes, and artificial neural net-
work), for the prognosis and diagnosis of diseases has been 
increasing (neuropsychiatric diseases—mixed35,60,65,82,83; 
depression84; MDD85-87; uni/bipolar depressive disorder88; anx-
iety disorder89; social anxiety disorder (SAD)90; ADHD63,91-98; 
and references therein). There are also several studies using 
regression algorithms (healthy controls99; childhood autism100; 

MDD101; SZ102). Unsupervised algorithms consist of clustering 
algorithms (eg, K-means cluster)103-105 and dimension reduc-
tion algorithms (eg, ICA, PCA) (related studies are provided in 
section “Principles of Data Fusion”).

Although numerous studies in the literature used a single 
modality for the classification of several diseases, the present 
review focused on studies that used MN for classification of 
psychiatric disorders (Table 3). There have been several studies 
that aimed to differentiate SZ patients from healthy controls 
(HC) by combining data from rs-fMRI/task-related fMRI, and 
sMRI,106-109 fMRI and single nucleotide polymorphism (SNP; 
genetic factor),110,111 and rs-fMRI and MEG,112 and some stud-
ies combined data from different 3 modalities34,113 (accuracy 
ranged from 75% to 100%).

Ford et al109 classified SZ and HC via Fisher’s linear dis-
criminate classifier by using task-related fMRI activation with 
78% accuracy and sMRI data with 52% accuracy but the best 
accuracy (87%) was obtained by using combined data (activa-
tion + volume). However, the study had a small sample size for 
classification and testing (validation). Yang et al108 combined 
connectivity features from rs-fMRI and anatomical features of 
sMRI data selected by ICA. They, then applied SVM for clas-
sification. Their findings show that combination of modalities 
(77.91%) yielded higher accuracy than using a single modality 
(72.09%). Cabral et al107 classified SZ patients based on sMRI 
data with 69.7% accuracy, versus accuracy of 70.5% based on 
rs-fMRI data, and 75% accuracy was obtained when sMRI and 
rs-fMRI data were combined. Qureshi et al106 developed fur-
ther on this former study using the combination of rs-fMRI and 
sMRI data and increasing sample size. Using ELM classifiers, 
they obtained 99.29% accuracy Although the results of all stud-
ies are convincing for the use of combined data, the accuracy 
rates could have been better if the EEG or MEG methods that 
has higher temporal resolution had been used as an additional 
modality.

Another method used for classifying SZ and HC is combin-
ing fMRI and genetic data (eg, SNPs). Yang et al111 used ICA 
and SVM-based classifier ensemble (SVME) methods for clas-
sification and measured accuracies for (a) SNP data alone 
(SNP-SVME), (b) fMRI activations alone(voxel-SVME), (c) 
components of fMRI activation obtained with ICA followed by 
SVM (ICA-SVMC), and (d) integration of fMRI and SNP data 
(combined SNP-fMRI). The accuracies they obtained were 
73.88% for SNP-SVME, 81.63% for voxel-SVME, 82.50% for 
ICA-SVMC, and 87.25% for combined SNP-fMRI. However, 
their sample size and the size of SNP array (dataset of geno-
types) were relatively small. On the other hand, Cao et al110 
analyzed a large dataset for distinguishing SZ from HC. They 
combine fMRI and SNP data with a model named as general-
ized sparse model (GSM) in which they selected the features by 
sparse representation-based variable selection (SRVS) algo-
rithm with four models. They compared several classifiers, 
including sparse representation-based classifier (SRC), fuzzy 
c-means (FCM) classifier, and SVM-based classifier, and the 
best results obtained with SRC with 89.7% accuracy. Although 
combining the neuroimaging techniques with SNP seems to be 

*Feature is a characteristic that is extracted from data; for example, 
voxels obtained from fMRI data.35

†The clear descriptions of the terms sensitivity, specificity, and accu-
racy were made by O’Halloran et al,81 as follows, “In the case of binary 
classifiers, for example, involving patients and controls, sensitivity 
refers to the proportion of patients (true positives) who are correctly 
identified as patients, whereas specificity measures the proportion of 
controls (true negatives) who are correctly identified as controls. The 
accuracy of the classifier refers to the total proportion of patients and 
controls that are correctly classified.”
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Table 3. Overview of Studies on the Classification of Psychiatric Diseases Based on Multimodal Neuroimaging and Fusion Techniques.

Study Participants Modalities Features Methods Accuracy

Schizophrenia
Ford et al (2002) 8 HC

15 SZ
Task fMRI
sMRI

HF voxels
HF volume

PCA
FLD

78% for fMRI
52% for sMRI
87% with combination of modalities

Yang et al (2010) 20 HC
20 SZ

Task fMRI
SNP

Voxels in the fMRI map
SNPs

ICA
SVM-based classifier 

ensemble (SVME)

73.88% with SNP
81.63% with fMRI
87.25% with combination of 

modalities
Sui et al (2013) 45 HC

52 SZ
rs-fMRI
sMRI
DTI

ALFF
GM density
FA

mCCA + jICA
LSVM
RSVM
KNN
GNB

The most powerful prediction (>90% 
accuracy) can be

accomplished using features from FA 
+ GM via RSVM

Sui et al (2014) 53 HC
48 SZ

rs-fMRI
sMRI
EEG

ALFF of rs-fMRI
GM segmentation image
from sMRI
EEG spectra

mCCA + jICA
Combination of 

2-sample t-test, 
MCCA, SVM-RFE

74% in training and 80% predication 
rate for EEG

84% in training and 90% predication 
rate for fMRI

86% in training and 80% predication 
rate sMRI

91% in training and 100% predication 
rate with combination of modalities

Cao et al (2014) 116 HC
92 SZ

fMRI
SNP

Voxels
SNPs

GSM
SRVS

89.7% with combination of modalities

Yang et al (2016) 46 HC
40 SZ

rs-fMRI
sMRI

FC
Anatomical features of 

sMRI

ICA
SVM

77.91% with combination of 
modalities

Cabral et al (2016) 74 HC
71 SZ

rs-fMRI
sMRI

Connectivity features 
of fMRI

Anatomical features (GM 
volume) of sMRI

PCA
ν-SVR

69.7% with sMRI
70.5% with rs-fMRI
75% with combination of modalities

Çetin et al (2016) 44 HC
47 SZ

rs-fMRI
MEG

FC
MEG data for each 

frequency

Sg-ICA
LDC
NBC
non-linear SVM

The average value of 3 classification 
methods’ accuracies for dynamic 
functional network connectivity

82.79% for fMRI
67.03% for ensemble of MEG features
87.91% with combination of 

modalities
Qureshi et al (2017) 72 HC

72 SZ
rs-fMRI
sMRI

FC
Different features of 

sMRI

ICA
ELM
linear and non-linear 

(radial basis function), 
SVM, LDA, random 
forest ensemble

99.29% (ELM classifiers) with 
combination of modalities

Psychosis
Pettersson-Yeo et al 

(2014)
23 HC
19 UHR
19 FEP

Task fMRI
sMRI
DTI

Different features of 
fMRI

GM
FAS

SK
MKL
AV
MV
SVM

86.33% with combination of DTI and 
fMRI for classifying FEP from UHR

83.33% with combination of all 
modalities for classifying FEP from 
UHR

Major Depressive Disorder and Depression
Ota et al (2013) Exploration sample

25 SZ
25 MDD
validation sample
18 SZ
16MDD

sMRI
DTI

GM Volume, ventricle 
volume

FA

Stepwise discriminant 
analysis

72% for SZ
88% for MDD

Schmaal et al (2015) 23 chronic MDD
36 gradual-improving 

MDD
59 fast remission 

MDD

Task fMRI
sMRI

Features of fMRI
GM

Binary GPC 62% chronic vs. remitted
61% chronic vs. gradually improved
44% gradually improved
vs. remitted

Schnyer et al (2017) 25 HC
25 MDD

sMRI
DTI

WM
FA

TBSS
SVM

Whole-brain FA map total 
classification accuracy was 70.0%

74% for brain map of white matter 
fractional anisotropy values (FA)

 (continued)
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Study Participants Modalities Features Methods Accuracy

ADHD
Bohland et al (2012) 482 HC

272 ADHD
Rs-fMRI
sMRI
Phenotypic 

data

FC
WM, CSF
IQ-related phenotypic 

features

2-sample t -test
Linear SVM

74% for sMRI
For fMRI
67% CORR Network
71% SIC Network
61% KAPPA Network
76% for combination of sMRI and 

fMRI features
Colby et al (2012) 491 HC

285 ADHD
rs-fMRI
sMRI

Different features of 
fMRI

Different features of 
sMRI

SVM-RFE
RBF-SVM

55% for combined data

Dai et al (2012) 402 HC
222 ADHD

rs-fMRI
sMRI

ReHo, FC
CT, GM

Combination of filter-
based and wrapper-
based methods

SVM-RFE, MKL

61.54% by 2-class classifier for 
combined data

Anderson et al 
(2014)

472 HC
276 ADHD

rs-fMRI
sMRI
Phenotypic 

data

FC
GM
IQ-related phenotypic 

features

NMF, ICA
Decision tree

66.8%

Qureshi et al (2017) 
(meta-analysis)

53 HC
53 ADHDI
53 ADHDC

rs-fMRI
sMRI

FC
Different features of 

sMRI

LASSO
Different classifiers 

(ELM, ELM-NFS, SVM 
Linear, SVM-RBF) and 
binary classification

76.190% accuracy for ELM in multi-
class settings, 73.81% accuracy 
for sMRI classification, 71.429% 
accuracy for fMRI classification

92.857% accuracy between 
ADHDI-HC based on binary 
classification

Abbreviations: HC, healthy controls; SZ, schizophrenia; rs-fMRI, resting state functional magnetic resonance imaging; sMRI, structural magnetic resonance imaging; ICA, independent 
component analysis; SVM, support vector machine; SNP, single nucleotide polymorphism; GM, gray matter; WM, white matter; FA, fractional anisotropy; PCA, principal component 
analysis; ν-SVR, ν support vector regression; EEG, electroencephalography; ALFF, amplitude of low-frequency fluctuation; mCCA, multi-set canonical correlation analysis; jICA, 
joint independent component analysis; SVM-RFE, support vector machine with recursive feature elimination; MEG, magnetoencephalography; Sg-ICA, spatial group independent 
component analysis; LDC, linear discriminant classifier; NBC, naïve Bayes classifier; HF, hippocampal formation; FLD, Fisher’s linear discriminate; GSM, generalized sparse model; 
SRVS, sparse representation-based variable selection; ELM, extreme learning machine; LDA, linear discriminant analysis; LSVM, linear support vector machine; RSVM, radial basis 
function support vector machine; KNN, Amari k-nearest neighbor algorithm; GNB, Gaussian naïve Bayes; FAS, fractional anisotropy skeleton; SK, unweighted “simple” sum 
of kernels; MKL, multi-kernel learning; AV, prediction averaging; MV, majority voting; FEP, first episode psychosis; UHR, ultra-high risk; MDD, major depressive disorder; DTI, 
diffusion tensor imaging; TCP, transductive conformal predictor; LLD, late-life depression; MD, mean diffusivity; LR, logistic regression; TBSS, tract-based spatial statistics; ADHDI, 
attention-deficit/hyperactivity disorder, inattentive; ADHDC, attention-deficit/hyperactivity disorder, combined; LASSO, least absolute shrinkage and selection operator; NFS, no 
feature selection; RBF, radial basis function; NMF, nonnegative matrix factorization, CSF, cerebrospinal fluid; CT, cortical thickness; ReHo, regional homogeneity; FC, functional 
connectivity; MKL, multikernel learning; CFS, correlation-based feature selection; GPC, Gaussian process classifier; CORR, correlation; SIC, sparse inverse covariance; KAPPA, 
Patel’s kappa.

promising to obtain higher accuracies than using single modal-
ity, it would be more powerful to include additional neuroimag-
ing techniques. As far as we know, there is one study that 
combined rs-fMRI and MEG data. Çetin et al112 differentiate 
SZ from HC with different classifiers and with an ensemble 
classifier. The best performance is provided by the combina-
tion of all by using the ensemble classifier (87.91%).

Besides sMRI, fMRI and genetic data, DTI and EEG can 
also be used to derive features for classification. Sui et al34 
combined rs-fMRI, sMRI and DTI (fractional anisotropy [FA]) 
with a fusion technique named as mCCA + jICA and used mul-
tiple type of classifiers. The most powerful prediction (>90% 
accuracy) can be accomplished using features from FA + gray 
matter (GM) via radial basis function support vector machine 
(RSVM). Sui et al113 combined rs-fMRI, sMRI, and EEG and 
selected the features via mCCA + jICA, 2-sample t test and 
SVM with recursive feature elimination (SVM-RFE). They 
obtained 91% in training and 100% predication rate with com-
bination of modalities.

To the best of our knowledge only 1 study combined 3 
modalities (task fMRI, sMRI, and DTI) to classify patients 
with psychosis. Pettersson-Yeo et al114 describe 4 integrative 
approaches to combine data obtained from task-related fMRI, 
sMRI, and DTI: (a) an unweighted sum of kernels, (b) multik-
ernel learning, (c) prediction averaging, and (d) majority voting 
in order to classify ultra-high-risk (UHR) individuals for psy-
chosis, first episode psychosis (FEP), and HC. The perfor-
mance of the classifier (SVM) was 83.33% with combination 
of all modalities for differentiating FEP from UHR, and the 
best performance was 86.33% with combination of DTI and 
fMRI for differentiating FEP from UHR.

There are 3 studies that attempted to classify MDD patients. 
Schnyer et al115 and Ota et al116 combined sMRI and DTI data 
to differentiate MDD from SZ and HC, respectively. While Ota 
et al116 used discriminant analysis for classification (72% for 
SZ, 88% for MDD), Schnyer et al115 applied SVM to classify 
SZ and HC (70% for whole-brain FA, 74% for white matter 
FA). On the other hand, Schmaal et al117 used combination of 

Table 3. (continued)
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task-related fMRI and sMRI of different types of patients with 
MDD and they classify them via binary Gaussian process clas-
sifier with the 62% accuracy for chronic and remitted MDD, 
61% accuracy for chronic and gradually improved MDD, 44% 
accuracy for gradually improved and remitted MDD.

Classification of ADHD was studies by Qureshi et al,118 
Colby et al,119 and Dai et al120 using a combination of rs-
fMRI and sMRI and by Anderson et al,121 and Bohland 
et al122 using rs-fMRI and sMRI, plus phenotypic data. Each 
study used a relatively large dataset and applied various 
types of classifiers and obtained different accuracies that 
change between 55% and 93% (please see Table 3). Moreover, 
Qureshi et al118 reported that the classification accuracy for 
ADHD patients was 73.81%, 71.43%, and 76.16 based on 
sMRI, fMRI, and sMRI + fMRI data, respectively. However, 
this study had a smaller sample size in comparison to former 
studies. It should also be mentioned that these ADHD studies 
did not use a modality that has high temporal resolution such 
as EEG or MEG.

There are also some studies that used different tasks75,123-

125 or different features126 of 1 modality as multiple modali-
ties, but they are not included in Table 3 because different 
neuroimaging techniques were accepted as modalities in our 
overview.

Although there are some constraints such as small sample 
sizes and few N-way combination, the results of the studies 
given above are encouraging for using multimodal neuroimag-
ing in classification of psychiatric diseases.

Conclusion and Future Directions

In recent years use of MN for the diagnosis of diseases gained 
momentum among researchers because of the limitations of 
unimodal neuroimaging techniques. In addition, the use of ML 
for early diagnoses, particularly psychiatric diseases, by neuro-
scientists is increasing. The present review aimed to provide an 
overview of published research based on MN and data fusion 
for classifying patients with psychiatric disorder/diseases and 
healthy controls, as well as an introduction to the types of data 
fusion approaches and ML techniques used for classification. 
Overall, the literature shows that MN improves the diagnostic 
prediction rate (accuracy) and provides more reliable classifi-
cation of psychiatric diseases107,111,114; however, it is obvious 
that MN still has several challenges that need to be overcome, 
including population size, as with exception of a few meta-
analyses, the other studies cited herein included small study 
populations. Furthermore, to date there remains the lack of an 
accurate ML technique for all applications; therefore, it may be 
useful to test various techniques with each dataset. In addition, 
more studies that use the N-way fusion model are needed, as 
the model could be helpful for obtaining more powerful results 
(eg, high accuracy) so the number of studies that combine mul-
tiple modalities should be increased. For instance, nonimaging 
predictors (such as age, gender, handedness, and cognitive abil-
ity) could be used as modality for the classification of diseases 
(eg, depression).
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