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Introduction

Obsessive compulsive disorder (OCD) is characterized by 
repetitive and persistent thoughts that cause distress and 
anxiety, and repetitive actions performed in an effort to ease 
the distress and anxiety caused by the repetitive thoughts.1 
The lifetime prevalence of OCD is reported to be 2.3% in 
the general population, and it is more common in females 
than males.2 The obsessions and compulsions associated 
with OCD often cause severe professional and social impair-
ment.3 First-line treatment for OCD includes selective sero-
tonin reuptake inhibitors (SSRIs) and behavioral therapy; 
however, close to 50% of OCD patients do not respond to 
SSRIs.4 When first-line SSRI treatment and behavioral ther-
apy fail, a trial of a second-line SSRI or clomipramine is 
recommended. Patients who do not respond to first- and 
second-line treatments can be treated with augmentation 
using antipsychotics, 5-HT3 antagonists, riluzole, meman-
tine, and ketamine, and in patients who do not respond to 
these pharmacological agents noninvasive brain stimulation 

techniques, such as electroconvulsive therapy (ECT) and 
repetitive transcranial magnetic stimulation (rTMS) can be 
used.5 Finally, ablative surgery and deep brain stimulation 
can be used as invasive treatment options.5

TMS is a noninvasive brain stimulation technique used  
to externally stimulate the brain cortex via magnetic pulses 
delivered by coils. For psychiatric purposes TMS is commonly 
administered by delivering repetitive stimuli (hence rTMS) to 
modulate brain activity. High-frequency repetitive stimulation 
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Abstract
Aim. In this study we assessed the predictive power of quantitative EEG (qEEG) for the treatment response to right frontal 
transcranial magnetic stimulation (TMS) in obsessive compulsive disorder (OCD) using a machine learning approach. Method. 
The study included 50 OCD patients (35 responsive to TMS, 15 nonresponsive) who were treated with right frontal low 
frequency stimulation and identified retrospectively from Uskudar Unversity, NPIstanbul Brain Hospital outpatient clinic. 
All patients were diagnosed with OCD according to the DSM-IV-TR and DSM-5 criteria. We first extracted pretreatment 
band powers for patients. To explore the prediction accuracy of pretreatment EEG, we employed machine learning methods 
using an artificial neural network model. Results. Among 4 EEG bands, theta power successfully discriminated responsive from 
nonresponsive patients. Responsive patients had more theta powers for all electrodes as compared to nonresponsive patients. 
Discussion. qEEG could be helpful before deciding about treatment strategy in OCD. The limitations of our study are moderate 
sample size and limited number of nonresponsive patients and that treatment response was defined by clinicians and not by 
using a formal symptom measurement scale. Future studies with larger samples and prospective design would show the role of 
qEEG in predicting TMS response better.
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increases cortical excitability, whereas low-frequency stimu-
lation suppresses excitability.6 For instance, 20-Hz stimula-
tion of the left dorsolateral prefrontal cortex is effective for 
the treatment of a major depressive episode and is frequently 
used for treatment-resistant depression.7 Various rTMS pro-
tocols and stimulation sites are currently used in patients 
with treatment-resistant OCD. These protocols include  
stimulation of the left dorsolateral prefrontal cortex, right 
dorsolateral prefrontal cortex, orbitofrontal cortex, and sup-
plementary motor area.8 These targets are used as they play a 
major role in the fronto-striato-thalamo-cortical circuitry 
implicated in OCD.9 Greenberg et  al10 first used rTMS to 
treat OCD in 1997 and observed that compulsions decreased 
to a greater degree following a single session of 20-Hz rTMS 
administered to the right-side, as compared with left-side 
administration. The benefits of right-sided stimulation are 
particularly interesting, as the researchers explained this 
finding according to a lateralization hypothesis. Indeed, met-
abolic studies reported that right-side cerebral activity cor-
relates with the symptoms of OCD and that this correlation 
no longer exists following successful behavior modification 
treatment.11 The literature includes 3 randomized control 
studies that attempted to replicate Greenber et al’s10 findings, 
but the findings were inconsistent. Sachdev et al12 reported 
improvement in the Yale-Brown Obsessive Compulsive 
Scale (YBOCS) score after both left- and right-side prefron-
tal rTMS, Alonso et al13 did not note any improvement in the 
YBOCS score in the rTMS treatment and sham groups, and 
Sarkhel et al14 reported that both the sham and rTMS treat-
ment groups improved equally. The inconsistency of these 
findings might have been due to heterogeneity of the stimu-
lation protocol, the number of stimulation sessions, comor-
bidities, and concomitant medication. Another possibility is 
that not everyone responds to rTMS. This possibility is 
important because it requires that researchers determine how 
to identify which patients will and will not respond to 
treatment.

Quantitative electroencephalography (qEEG) is a method 
of measuring brain functions based on calculating the power 
of oscillations. Power values for each electrode and band 
(eg, alpha, beta, theta, and delta) are calculated after employ-
ing signal processing techniques and can be used to examine 
brain activity characteristic of particular diseases, as well as 
to predict response to different types of treatment. For 
example, Hansen et  al15 reported that OCD patients with 
excessive frontal theta activity do not respond well to parox-
etine. A qEEG study based on source localization techniques 
reported that lower anterior cingulate and medial frontal 
gyrus beta activity was associated with poorer treatment 
response to antidepressants.16 It was also reported that alpha 
activity in the corpus striatum—in the orbito-frontal and 
temporo-frontal regions—was inversely correlated with the 
response to paroxetine.17 Krause et al18 performed qEEG in 
OCD patients treated with sertraline and reported that the 

responders had lower frontal and parietal fast activity, and 
lower alpha activity in the orbitofrontal cortex than did the 
nonresponders. More recently, Dohrmann et  al19 reported 
that responders to SSRI and/or psychotherapy had lower 
levels of resting-state vigilance, as measured by qEEG.

Increasingly, psychiatric research is employing particle 
swarm optimization (PSO), which is a global optimization 
algorithm inspired by the collective intelligent behavior of ani-
mal groups, such as flocks of birds, schools of fish, and swarms 
of termites. The PSO algorithm simulates the social behavior of 
individuals learning from personal experience and interactions 
with others. Some particles in the algorithm represent individu-
als in an animal group and other particles represent the swarm 
(the animal group) working together to achieve a common 
goal.20,21

Another contemporary trend in psychiatric research is the 
use of artificial neural networks (ANNs), which are inspired 
by biological neural networks composed of a very complex 
web of interconnected neurons. The basic processing ele-
ments of any ANN are artificial neurons, also known as 
nodes. Each node consists of 3 basic elements: inputs to the 
node, which are characterized by a weight or strength of 
their own; the summing function, which creates a weighted 
sum of inputs; the activation function, which limits the 
amplitude range of the output. Additionally, each node has 
an externally applied bias that is set to a negative or positive 
value, which then increases or decreases the net input of the 
activation function.22,23

ANN’s are organized as layers of nodes, namely the input 
layer, hidden layers, and the output layer. The number of 
nodes in each layer, the number of hidden layers, and the 
number of connections between neurons (ie, the feedfor-
ward network and recurrent network) constitute the archi-
tecture of an ANN. In a feedforward network the input 
values flow from the input layer to the output layer, whereas 
a recurrent network has ≥1 feedback loop that acts as the 
memory of the neural network.22,23

The learning (training) process for an ANN involves feeding 
the input vectors to the network, so that the network improves 
its performance (ie, the correct recognition rate) by adjusting 
synaptic weights according to a learning algorithm. One of the 
most common learning algorithms is the backpropagation (BP) 
algorithm.24-28 The BP algorithm utilizes the gradient descent 
rule to minimize the prediction error of an ANN and is known 
for its ability to minimize the prediction error in highly nonlin-
ear search spaces.23

The present study aimed to be the first to use qEEG to pre-
dict treatment response to right frontal rTMS in OCD patients. 
Before rTMS treatment all OCD patients underwent qEEG 
recording. Then, following rTMS treatment (right-side frontal 
low-frequency stimulation) the ability of pretreatment qEEG to 
predict response to rTMS treatment was determined using PSO 
and an ANN, specifically a feed-forward neural network and 
the BP learning algorithm.
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Materials and Methods

Patient Characteristics

This study included 50 OCD patients retrospectively selected 
from the patient database of Uskudar University, NPIstanbul 
Outpatient Clinic, Istanbul, Turkey. OCD was diagnosed 
according to DSM-IV-TR and DSM-5 criteria. rTMS at the 
frequency of 1 Hz was administered to the right dorsolateral 
prefrontal cortex. In total, 1000 pulses were administered 
with 110% of the motor threshold. The motor threshold was 
determined as the lowest setting at which ≥50% of the stim-
uli produced an observable movement. Patients underwent a 
mean 22 sessions (range: 12-40). All the patients, except for 
1 (due to pregnancy), were receiving an antidepressant 
(selective serotonin reuptake inhibitor [SSRI]); additionally, 
28 were receiving an antipsychotic, 6 were receiving a mood 
stabilizer, and 2 were receiving a benzodiazepine. The deci-
sion to administer rTMS was made on the basis of inadequate 
response to medical treatment. Post-rTMS remission of OCD 
was determined based on a clinical evaluation interview con-
ducted by 2 psychiatrists.

qEEG Analysis

The study retrospectively examined qEEG data for 35 OCD 
patients that responded to rTMS and 15 OCD patients that 
did not respond to rTMS. All qEEG data were recorded dur-
ing 3 minutes of rest while the patients sat with eyes closed. 
During recording 19 electrodes were placed according to the 
10-20 system. Linked ear electrodes (A1-A2) were used as a 
reference. All impedances were maintained at <10 kohm. 
The acquisition sampling rate was 125 Hz, acquired signals 
were band-pass filtered at 0.15 to 70 Hz (using a 50-Hz notch 
filter), and data artifacts were eliminated manually off-line 
for each patient. To remove artifacts all data were inspected 
and any segment containing muscle movement, eye move-
ment, electrode popping, or similar types of artifacts were 
excluded from analysis. Fast Fourier transform (FFT) analy-
sis was performed by averaging across 2-second epochs. 
Absolute power was computed for the delta (1-4 Hz), theta 
(4-8 Hz), alpha (8-12), and beta (12-25 Hz) bands. 
NeuroGuide Deluxe v.2.5.1 (Applied Neuroscience, Largo, 
FL) software was used for qEEG analysis.

Feature Selection and Classification

The band power feature vectors created for characterization 
of qEEG signals can contain redundant features that can 
result in increased computational complexity and degraded 
classification performance. To avoid these problems the fea-
ture subsets that contain complementary information leading 
to the highest-level classification performance must be deter-
mined. The feature subsets that provide the best class separa-
bility are highly dependent on the nature of the data set and 

the classification method employed. One method of deter-
mining the optimal feature subset is to perform an exhaustive 
search in the feature space by checking the performance of 
the classifier for all possible combinations of features; how-
ever, this approach is computationally expensive and imprac-
tical, and, therefore, feature selection methods are used for 
identifying the optimal feature subsets.29,30

Feature selection methods fall in to 3 broad categories: 
filter, wrapper, and embedded. Filter methods perform fea-
ture selection based on statistical characteristics of the fea-
ture vector without involving any learning algorithms. 
Wrapper methods require a predetermined learning algo-
rithm that is used to evaluate the performance of the feature 
combinations, so as to select an optimal feature subset. 
Embedded methods involve learning algorithms with built-
in mechanisms for performing feature selection as a part of 
their training (learning) process. In general, all these fea-
ture-selection methods work by means of choosing the com-
plementary features from the candidate feature set or by 
assigning a weight (measure of relevance) to all the features 
in the candidate feature set.29-31

In the present study a wrapper method was used for fea-
ture selection via PSO, along with an ANN. The PSO algo-
rithm was used for estimating feature weights and the ANN 
was used for evaluating the classification performance of 
weighted features.

Particle Swarm Optimization

Optimization is basically maximization or minimization of 
an objective function based on choosing the optimal param-
eter set.32 Within the scope of the present study, the objec-
tive was to maximize the classification performance of the 
ANN classifier via optimization of feature weights using 
PSO. The weight of a feature describes the relevance of the 
feature for a given classification task. Using PSO, each par-
ticle represented a weight vector for 19 features in the fea-
ture set.

The PSO algorithm employed 3 steps that were iterated until 
a stopping criterion was met:

1.  Initialize:
•• The swarm is composed of n particles S = {X1, X2, 

. . ., Xn}.
•• The position of particle i in the swarm is represented 

by the vector Xi = [xi1, xi2, xi3, . . ., xiD], where D is 
the dimensionality of the search space.

•• For each of n particles:
○  Initialize position of a particle: xi(0), i = 1, . . ., n
○  Initialize particle’s best position: pi(0) = xi(0)
○  Calculate fitness f(·) of each particle and initial-

ize global fitness:
g = argmax {f(x1(0), x2(0), . . ., xn(0))}, where 
f(·) represents the fitness function.
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2.  Repeat the following steps until the stopping criterion is 
met:
For each of n particles:

•• Update velocity of particle i:
vi(t + 1) = w·vi(t) + c1·R1·(pi-xi(t)) + c2·R2· 
(g-xi(t)), where t and t + 1 indicate successive itera-
tions of the algorithm, the rest of parameters are 
explained below.

•• Update position of particle i: xi(t + 1) = xi(t) + vi 
(t + 1)

•• Calculate fitness of particle i: f(xi(t + 1))
•• Update individual and global fitness:

If f(xi(t + 1)) > f(pi), pi = f(xi(t + 1))
If f(xi(t+1)) > f(g), g = f(xi(t + 1))

3.  After the stopping criterion was met, the optimal solu-
tion was represented by particle g, which represented 
the best fitness in the population.

In the present study, the stopping criterion was reaching the 
maximum of 180 iterations. This value was selected based on 
examination of the convergence of the feature weights repre-
sented by each particle.

The velocity update formula, vi(t + 1) = w·vi(t) + 
c1·R1·(pi-xi(t)) + c2·R2·(g – xi(t)), has a set of parameters 
that needs to be fixed. The inertia weight (w) keeps the par-
ticle from changing its original direction. c1·R1·(pi – xi(t)) is 
the cognitive component representing a particle’s memory, 
which causes the particle to return to regions of the search 
space in which particle fitness was the highest. c2·R2·(g – 
xi(t)) is the social component representing a particle’s inter-
action with other particles, causing the particle to move to 
regions of the search space in which global fitness is high-
est. Parameters c1 and c2 control the step size of a particle 
toward the best individual fitness and best global fitness, 
respectively. Clerc33 recently reported some general direc-
tives for choosing a good combination of parameters, as fol-
lows: Swarm size: n = 20 particles; cognitive parameter: c1 
[0,1], with a preference for 0.7; social parameter: c2 ~ 1.5, 
with a preference for 1.43. Nevertheless, different parameter 
values can generate better or worse outcomes depending on 
the problem; therefore, the best solution is to perform sensi-
tivity analysis in the context of the problem description.26 
Parameters R1 and R2 are 2 diagonal matrices of random 
numbers with a uniform distribution between 0 and 1. These 
parameters help a particle move toward the optimal solution 
in a semirandom manner. The values of parameters R1 and 
R2 in the present study were 0.7 and 0.8, respectively.33-35

Artificial Neural Networks

The ANN model used in the present study was composed of an 
input layer with 19 nodes, a hidden layer with 20 nodes, and an 
output layer with 1 node. The neural network model was 

constructed with a 19-node input layer because the band power 
features were computed using qEEG signals recorded from 19 
electrode locations. Because of its nonlinear structure, the log-
sig transfer function was employed in the hidden layer and the 
purelin transfer function was employed in the output layer. The 
trainlm training function was used to train the model. Trainlm 
is a training function that uses Levenberg-Marquardt optimiza-
tion to update the weight and bias values in the neural network 
model. The classification accuracy of the neural network model 
was tested using 5-fold, 7-fold, and 10-fold cross validation, 
and 7-fold cross-validation was subsequently used, as it pro-
vided the highest classification accuracy.

Results

There was no significant difference in age (P = .232) or gender 
(P = .902) between the patients who did and did not respond to 
rTMS (Table 1).

Repeated-measures analysis of variance of the respond-
ers’ and nonresponders’ delta, theta, alpha, and beta band 
power values, with electrode locations as the within-partici-
pant factor and treatment response as the between-partici-
pant factor, showed that there were no significant differences 
(P > 0.05) between the 2 patient groups. According to the 
independent samples t-test used to compare pairwise elec-
trodes in the responders’ and nonresponders’ delta, theta, 
alpha, and beta band power data, there were no significant 
differences (P > .05).

The present study investigated the ability to predict 
response to rTMS treatment in OCD patients based on qEEG 
band power features (extracted from the delta, theta, alpha, 
and beta bands), which were considered biomarkers. ANN 
and PSO were used for feature selection/weighting and clas-
sification. The correct prediction rate and confusion matrices 
for each frequency band are given in Table 2. The highest 
prediction rate of 80% was obtained using theta band power 
features. The confusion matrices of all the frequency bands 
indicated that the majority of prediction errors were caused 
by misclassification of treatment nonresponders as respond-
ers, which is a common problem when analyzing classes with 
an imbalanced sample size and decision boundaries tend to be 
biased toward the majority class.36

Table 3 shows the feature weights estimated using the PSO 
algorithm and ANN classifier; weights for 12 of the 19 features 

Table 1.  Descriptive Statistics for Patients’ Gender.a

Nonresponsive Responsive Total

Age, years, mean (SD) 35.07 (11.41) 30.86 (10.46)  
Gender  
  Male 8 18 26
  Female 7 17 24
Total 15 35 50

aP = .23 and P = .9 for age and gender differences, respectively.
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are given, as the weights for the other 7 features were <0.05, 
which led to the conclusion that these features were irrelevant 
for the classification task.

Figure 1 shows the absolute band power features aver-
aged over channels for the 2 patient groups. The plots in 
the figure show that the mean delta, theta, and alpha band 
power values were higher in the treatment responders than 
in the nonresponders.

Discussion

The present study aimed to determine if OCD patient 
response to rTMS can be predicted via qEEG data subjected 
to machine learning methods. The findings showed that 
among the 4 qEEG bands analyzed, theta band power was 
able to differentiate treatment responders from nonre-
sponders. The responders had higher theta band power at all 
electrodes than did the nonresponders. The findings also 
show that qEEG could be helpful for predicting treatment 
response for OCD patients.

The present findings are important in the following 2 
ways. First, treatment resistance is a critical issue in psy-
chiatry and, in particular, OCD is associated with a high 
rate of treatment resistance.37 Although the definition of 
treatment resistance varies, studies report that >50% of 
OCD patients may not respond to treatment.38 Some patients 
need to try several courses of different antidepressant and 
antipsychotic medications before a satisfactory treatment 
response is achieved. Beyond pharmacological therapies, 
neuromodulation can also be used to treat OCD; however, 
as with pharmacological treatments, a significant percent-
age of patients do not respond to rTMS (30% in the present 
study). Use of biomarkers, such as qEEG absolute power, 
might help clinicians tailor the treatment of OCD to yield 
the most optimal outcome possible; such an approach is 
consistent with the emerging concept of personalized medi-
cine.39 Second, theta power might be positively correlated 
with the level of response to rTMS. Increased theta power 
has been reported in a number of neuropsychiatric disor-
ders; in particular, ADHD is frequently associated with 
increased theta and decreased beta power.40 The same find-
ing in OCD patients (as reported herein) indicate that 
responders to rTMS might have a lower resting arousal 
level than non-responders. Interestingly, an earlier study 
also reported that lower resting arousal predicted better 
response to antidepressants in OCD patients.19

The present study has some limitations, including a small 
OCD patient sample that included only 15 nonresponders to 
rTMS (primarily due to the retrospective study design). In 
addition, treatment response was defined by clinicians and a 
formal symptom measurement scale such as the YBOCS was 
not used; however, it should be noted that patient files were 
independently evaluated by 2 psychiatrists to confirm non-
responder status. Lastly, rTMS and qEEG results were evalu-
ated retrospectively. Based on these limitations, the present 
findings should be evaluated cautiously and considered pre-
liminary. Additional larger-scale studies that employ a pro-
spective design, and document pretreatment and posttreatment 

Table 2.  Correct Prediction Rate Along With Confusion Matrices for Each Frequency Band.

Frequency Band PSO + ANN Accuracy (%)  

Delta 68.0 Not responsive (actual) Responsive (actual)
Not responsive (predicted) 2 3
Responsive (predicted) 13 32

Theta 80.0 Not responsive (actual) Responsive (actual)
Not responsive (predicted) 10 5
Responsive (predicted) 5 30

Alpha 74.0 Not responsive (actual) Responsive (actual)
Not responsive (Predicted) 6 4
Responsive (predicted) 9 31

Beta 68.0 Not responsive (actual) Responsive (actual)
Not responsive (predicted) 2 3
Responsive (predicted) 13 32

Abbreviations: PSO, particle swarm optimization; ANN, artificial neural network.

Table 3.  Feature Weights Estimated by Particle Swarm 
Optimization.

Selected Channels Feature Weights

C3 0.054
O2 0.226
Fp2 0.478
F4 0.682
F3 0.774
Fp1 0.792
Pz 0.825
Fz 0.972
O1 1
F7 1
C4 1
Cz 1
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symptom scores are required to further elucidate the ability 
of qEEG to predict the response of OCD patients to rTMS.
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